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Strong Mixing Conditions: Gibbsianness and
Convergence of Renormalized Interactions

Lorenzo Bertini,1 Emilio N. M. Cirillo,2 and Enzo Olivieri3

Received June 1, 1999; final August 9, 1999

In this paper we study a renormalization-group map: the block averaging trans-
formation applied to Gibbs measures relative to a class of finite-range lattice
gases, when suitable strong mixing conditions are satisfied. Using a block
decimation procedure, cluster expansion, and detailed comparison between
statistical ensembles, we are able to prove Gibbsianness and convergence to a
trivial (i.e., Gaussian and product) fixed point. Our results apply to the 2D
standard Ising model at any temperature above the critical one and arbitrary
magnetic field.
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1. INTRODUCTION

This paper concerns the rigorous analysis of some real-space renormaliza-
tion group transformations (RGT) (see, for instance, [NL] for a general
introduction to this subject). In recent years many works have been
devoted to the question of well-definedness of RGT. We refer to [EFS] for
a clear and complete discussion of the problem as well as for an exhaustive
description of the general setup of renormalization maps from the point of
view of rigorous statistical mechanics. Already in the seventies (see [GaK],
[CG], [GP], [I]) the question was raised of whether or not some typical
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RGT give rise to a well defined renormalized interaction. In other words,
calling +(l) the renormalized measure arising from the application of a
RGT on scale l to the Gibbs measure +, we pose the question of Gibbsian-
ness of +(l), namely we ask ourselves whether +(l) is a Gibbs measure
corresponding to a finite-norm translationally invariant potential so that
the ``renormalized Hamiltonian'' is well defined.

More explicitly: let us assume that our RGT can be expressed as

+(l)(_$)=:
_

T (l)(_$, _) +(_) (1.1)

where T (l)(_$, _) is a normalized non-negative kernel. The system described
in terms of the _ variables by the original measure + is called object system.
The _$ are the renormalized variables of the image system described by the
renormalized measure +(l). We can think of the transformation Tl as
directly acting at infinite volume or we can consider a finite volume version
and subsequently try to perform the thermodynamic limit (see [EFS]).

The above mentioned pathological behavior (non-Gibbsianness of
+(l)) can be a consequence of the violation of a necessary condition for
Gibbsianness called quasi-locality (see [Ko], [EFS], [Su]). The latter is
a continuity property of the finite volume conditional probabilities of +(l)

which, roughly speaking, says that they are almost independent of very far
away conditioning spins. In many interesting examples (see [E1], [E2],
[EFS], [EFK]) violation of quasi-locality and consequently non-
Gibbsianness of the renormalized measure +(l) is a direct consequence of
the appearance of a first order phase transition for the original (object)
system conditioned to some particular configuration of the image system.
More precisely, given a configuration _$, let us consider the probability
measure on the original spin variables given by

+_$(_)=
T (l)(_$, _) +(_)

�' T (l)(_$, ') +(')

It defines the constrained model corresponding to _$ (which here plays the
role of an external parameter). For some particular _$ it may happen that
the corresponding measure +_$(_) exhibits long range order inducing viola-
tion of quasi-locality and then non-Gibbsianness for the image system. See
[EFS] and also [GP], [I] where this mechanism was first pointed out.

This pathological behavior is often induced by configurations _$ highly
non-typical with respect to the measure +(l). This suggests the introduction
of a weaker notion of Gibbsianness requiring well-definedness of renor-
malized interactions not for all renormalized configurations _$ but, rather,
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for +(l)��almost all _$ (see [D2], [BKL], [DS5], [MV]). However also
this point of view poses various other problems (see [ES], [L1], [L2],
[MRM], [LM]).

It is also natural to ask ourselves about robustness of this pathology
[ES]. Sometimes it can be shown that non-Gibbsianness is an artifact due
to a wrong choice of the scale l of the transformation in terms of the ther-
modynamic parameters of the object system. For instance in [MO4] has
been considered the case of the measure +(l)=T (l)

d +;, h , where T (l)
d is the

so-called decimation transformation on scale l (see [EFS]) and +;, h is the
Gibbs measure for the standard 2D Ising model, h and ; being, respec-
tively, the external field and the inverse temperature. In [EFS] the authors
show non-Gibbsianness for some choices of h, ;, l. On the contrary, in
[MO4] it is shown that, for the same values of h, ; for which, for suitable l,
in [EFS] the authors got non-Gibbsianness, by changing l into a sufficiently
large l$ depending on ;, h, one gets again Gibbsianness. We also mention
it is possible to show that, by iterating the transformation, one has con-
vergence to a (trivial) fixed point, see [MO4], [I] and also [Ka] for the
high temperature case. The above behavior is related to the fact that, given
suitable values of the parameters ;, h (close to the coexistence tine
h=0, ;>;c), on a suitable scale l, some constrained models can undergo
a phase transition (somehow related to the phase transition of the object
system); whereas, given the same h, ;, for sufficiently large scale l any
constrained model is in the weak coupling region. Another notion of
robustness of the pathology is related to the application of decimation
transformations, see [LV], [MO5].

Let us stress that the fact that the object system is very well behaved
in the sense that it is in the unique phase region (in the strongest possible
sense) does not preclude the possibility that some constrained model
undergoes a dangerous phase transition inducing the pathology.

On the positive side, since the pioneering paper [CG], there are many
indications that if the constrained models are in the weak coupling regime,
then Gibbsianness of the renormalized measure follows. Recently Haller
and Kennedy gave very interesting new rigorous results in this direction.
They proved, under very general hypotheses, that if all constrained models
satisfy a uniform (in the constraint) version of the Dobrushin�Shlosman
complete analyticity condition (see [DS2], [DS3]) then the renormalized
measure is Gibbsian with a finite norm potential which can be computed
via a convergent cluster expansion.

Another interesting question, which, in a sense, is the main object of
the present paper, is the convergence of the iterates of RGT or, in other
words, the behavior of the transformation T (l) for large l. This problem
has not been, up to now, studied very much from a point of view of
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rigorous statistical mechanics. Here we present results referring to non-
critical systems and so we have convergence to a trivial fixed point, i.e.,
Gaussian and product (which correspond to infinite temperature). Indeed
most of the recent papers concerning rigorous results on RGT refer to the
non-critical region with some exceptions, see [BMO], [CiO], [HK],
where the authors consider 2D critical Ising system but only for one step
of RGT.

Let us now introduce, for the standard 2D Ising model, the Block-
Averaging Transformation (BAT). It is convenient to use the lattice gas
variables. For a standard Ising system enclosed in a finite volume 4/Z2

the configuration space is therefore [0, 1]4; given a configuration ' #
[0, 1]4 and a site x # 4, 'x # [0, 1] represents the occupation number at x.
For free or periodic boundary conditions the energy associated to a con-
figuration to ' # [0, 1]4 is:

E4(') := &; :
(x, y) /4

'x'y&* :
x # 4

'x (1.2)

where (x, y) is a pair of nearest neighbor sites, ; is the inverse temperature
and * is ; times the chemical potential so that the Boltzmann factor is
texp[&E4(')]. Given ; let **=**(;) be the value of * corresponding
to the value zero of the magnetic field h appearing in the expression of E
in terms of spin variables _x=2'x&1. For ;, * in the uniqueness region:
(;, *) # [;<;c] _ [;�;c , *{**] (;c is the inverse critical temperature),
let +;, * be the unique infinite volume Gibbs measure. We partition Z2 into
square blocks Ql(i) of side l and centers at the points i belonging to the
rescaled lattice (lZ)2. Let Ni=N i (') :=�x # Ql (i) 'x be the number of par-
ticles in the block Ql(i) in the ' configuration, \=\(;, *)=+;, *('0) be the
equilibrium density, /=/(;, *) :=�x # Z2 [+;, *('0'x)&+;, *('0) +;, *('x)]
be the susceptibility; we then set:

Mi :=
Ni&\ |Ql |

- |Ql | /
(1.3)

the random variables Mi are centered and normalized; they take values in

0� (l)
i :={&\ |Ql |

- |Ql | /
,

1&\ |Ql |

- |Ql | /
,...,

|Ql | (1&\)

- |Ql | / = (1.4)

We expect Mi , i # (lZ)2 to have a product (Gaussian) limiting distribution
as l � �.

The renormalized measure +(l)=+ (l)
;, * (arising from the application of

the BAT transformation on scale l to +;, *) is the joint distribution of the
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random variables Mi 's under +;, * ; i.e., it is obtained by assigning to each
block Ql(i) a value m i # 0� (l)

i and by computing the probability, w.r.t. the
original Gibbs measure +;, * of the event: Mi (')=mi . In other words, in
the notation of (1.1) in the case of BAT we have: _=['x], _$=[mi ] and

T (l)
BAT(m, ')={1

0
if M i (')=mi \i
otherwise

In this case a constrained model is a multi-canonical Ising model; namely
an Ising model subject to the constraint of having a fixed number of par-
ticles in each block Ql(i).

Theorem 1.1. Consider a 2D Ising system with ;<;c and * # R
given. Then there exists l0 # N such that \l>l0 , + (l)

;, * is Gibbsian with a
finite norm translationally invariant potential 8(l)=[8 (l)

X , X/(lZ)d ].
Furthermore it is possible to decompose the potential (see Sections

2.3, 2.4 below) into a short and a long range part, 8(l)=8(l), sr+8(l), lr,
where _} # N: 8 (l), sr

X #0 if diam(X )�} and we have the following:

(i) there is :>0 such that

lim
l � �

:
X % 0

e: |X | sup
mi # 0� i

(l)
|8 (l), lr

X (mi , i # X )|=0

(ii) there exist a>0 such that

lim
l � �

sup
mi # 0� i

(l)

|mi |�la

|8 (l), sr
X (mi , i # X )|=0 for |X |�2

lim
l � �

sup
mi # 0� i

(l)

|mi |�la

|8 (l), sr
[i ] (mi )& 1

2m2
i |=0 for i # (lZ)d

We want to stress that the results hold for l sufficiently large. Cer-
tainly, in particular, we cannot exclude that, very near to Tc , for some, not
sufficiently large l, the renormalized measure is not Gibbsian. Actually in
[E2] it has been shown that, at zero external magnetic field, the BAT
transformation, defined on 1 by 2 blocks, results in a non-Gibbsian
measure for any temperature in an open interval including the critical
Onsager value. On the other side, it is easily seen that taking the limit
l � � is equivalent to iterating the BAT transformation on a given
scale l0 ; to show this it is sufficient to take l=ln

0 with n # N. Theorem 1.1
above says that not only the renormalized measure + (l)

;, * , for any sufficiently
large l is Gibbsian but the corresponding renormalized potential 8(l)
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actually converges, as l � �, to the one of a system of non-interacting har-
monic oscillators.

We notice that the limiting image system as l � � becomes an
unbounded spin system and the usual setup of Gibbsianness does not apply
to it (see [EFS]). It is therefore clear that we have to introduce a large
field cutoff. Indeed our result is almost optimal as we introduce this cutoff
only for the short range part of the interaction and, moreover, the cutoff
diverges as a power law in l. On the other side it is not difficult to convince
ourselves that the convergence result, at least in the form given above,
cannot hold without any restriction on the large fields.

For the sake of simplicity, in Theorem 1.1 we considered the case of
the standard Ising model. We stress that the results of the present paper are
much more general: indeed, they apply to a general finite states space and
finite range lattice spin system under a suitable mixing condition (see
Theorem 2.2).

This paper contains also other, much weaker, results that apply to
Ising model below Tc at *{**, see Theorem 2.3 below. In that case we are
forced to restrict the possible values of mi also in the computation of long-
range part of the renormalized potential; indeed we have of course to
forbid that mi lies in the phase coexistence interval.

Results in the same direction as Theorem 1.1 were obtained by
Cammarota [C]; the main differences w.r.t. the present paper are that
Cammarota considers a high temperature (much higher than Tc=;&1

c )
situation and that he introduces a finite (not growing to infinity as l � �)
field cutoff. The approach of [C] is substantially different w.r.t. ours; [C]
uses a high temperature expansion: the small parameter is ; and the system
is supposed to be weakly coupled on scale one; whereas since we want to
treat a system with T=;&1 higher but arbitrarily close to Tc , we have to
use an approach supposing weak coupling only on a sufficiently large scale
depending on the temperature T>Tc that we have chosen; indeed we are
forced to act in the scenario of the so called restricted complete analyticity.
Let us try to clarify this point. Exactly in the spirit of renormalization
group theory we can say that a system above its critical point is very
weakly coupled on a scale large compared to the correlation length; as we
want to consider any T>Tc we have to take into account the divergence
of the correlation length when approaching Tc (from above). The above
statement: ``the system is weakly coupled on a scale larger than the correla-
tion length'' seems a tautology; in fact it is not since we need a suitable
mathematical setup in order to be able to implement the above simple
observation. The basic idea is to obtain a perturbative expansion on the
basis of very strong mixing conditions satisfied by the Gibbs measures; the
small parameter ceases to be the inverse temperature but it will, rather, be
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related to the ratio between the correlation length and the scale on which we
are analyzing our system. The geometrical objects (polymers) in terms of
which we perform our perturbative expansions will not live any more on scale
one (like in [C]) but on a scale sufficiently larger than the correlation length.

A possible notion of strong mixing is the exponential decay of trun-
cated correlations for any finite volume Gibbs measure with decay con-
stants uniform in the volume and in the boundary conditions. This is a
stronger notion w.r.t uniqueness of the Gibbs state or exponential cluster-
ing of infinite volume truncated correlations. In [DS2], [DS3] Dobrushin
and Shlosman introduced and studied the so called completely analytical
interactions showing, in those cases, the above strong mixing behavior for
any finite or infinite domain of arbitrary shape. This complete analyticity
turns out to be a too strong notion in the context of renormalization group
theory. Indeed Dobrushin�Shlosman's complete analyticity implies that
exponential clustering takes place even inside volumes with very
anomalous shapes (for instance with ratio between boundary and bulk not
going to zero) so that one is forced to take into account the influence of
boundary conditions up to a scale of order one. There are cases of systems
perfectly well behaved on regular domains, say cubes, which, however, do
not satisfy D-S complete analyticity because of their behavior for
anomalous shape domains (see example in [MO2], [EFS] and [EFSS]).
Another point of view, introduced in [O], [OP], [MO1], [MO2],
[MO3] leading to what can be called restricted complete analyticity, takes
into account only regular domains. In this approach there is a minimal
basic length L and one never goes below L in the sense that one only con-
siders domains obtained as disjoint unions of cubes of side L (for instance
cubes of side nL).

The algorithm used in the present paper to compute the renormalized
potential is the following. We start, as basic hypothesis, from restricted
complete analyticity for the constrained, multi canonical systems, with a
minimal length L proportional to the scale l of our BAT transformation
and with decay constants uniform in the constraint. We then construct a
convergent cluster expansion which allows us to compute the renormalized
potential. Since studying directly the mixing properties of a canonical or
multi-canonical measure is a very difficult task we instead deduce it by
using a sharp form of equivalence, or better comparison, between canonical
and grandcanonical ensembles. Indeed, the main key novel technical point
of this paper is to get a very precise notion of equivalence of ensembles,
implying the validity of a finite size condition, which, in turn, will imply a
strong mixing condition for the constrained multi-canonical systems. See
also [DT], [CM], [Y] for a further discussion on the equivalence of
ensembles.
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Certainly assuming strong mixing for the object system with a given
value * of the chemical potential is not sufficient to imply the strong mixing
property of the constrained models even at the level of regular domains. It
is, rather, necessary to assume for the object grandcanonical system a
strong mixing condition uniform in *. Quite surprisingly, this condition is
not sufficient in general. Indeed it turns out that what we really need is a
strong mixing condition for a multi-grandcanonical object system; by multi-
grandcanonical we mean a grandcanonical measure which is not transla-
tionally invariant because in each cube Ql(i) we put a different potential *i

whereas we leave the original, translationally invariant, mutual interaction.
It happens, as it is shown by an example in Appendix A.2 that uniform
(in *) strong mixing for a grandcanonical measure does not imply uniform
in *

�
=[*i ] strong mixing for the multi-grandcanonical measure; this pathol-

ogy is due to the possibility of a sort of layering phase transition, with long
range order, taking place along the interface between two contiguous large
cubes with different chemical potentials *1 , *2 even though, introducing the
same chemical potential *1=*2=* in both cubes the resulting system, is,
\*, very well behaved. On the other side we show that since the interface
between two regular two-dimensional domains is one-dimensional, this
layering phase transition cannot occur when the object system lives in two-
dimensions. Then the result of Theorem 1.1 ultimately follows from strong
mixing, uniform in *, exploiting the two-dimensionality of the Ising system.
The latter follows from the general result of [MOS] saying that in two
dimensions the so-called weak mixing implies strong mixing, provided one
is able to prove weak mixing for the particular model. This is weaker
notion of mixing of a finite volume Gibbs measure saying, roughly speak-
ing, that the influence of a change in a conditioning spin on a site x outside
a domain 4 decays, inside 4, with the distance from the boundary �4 and
not, like it would be the case assuming strong mixing, with the distance
from x. Weak mixing, uniform in the chemical potential *, for the Ising
model above Tc has been proved by Higuchi in [H] exploiting general
results by Aizenman et al. [ABF] about boundedness of the susceptibility
above Tc . We thus use the two-dimensionality in two crucial points: i) in
deducing uniform strong mixing for multi-grandcanonical measure from
the same property for a simple grandcanonical measure and ii) in deducing
strong mixing from weak mixing. On the other side, given the strong
mixing condition for the multi-grandcanonical measure, the results on the
RGT of this paper apply to any dimension.

The general results about Gibbsianness of renormalized measures that
have been obtained by Haller and Kennedy in [HK], use a strategy very
similar to ours. Indeed their computations, also based on the methods
developed in [O], [OP], are much simpler and more transparant than
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ours but apply only to the case when the image system is Ising-like; namely
the _$ variables are dichotomic as in Majority rule of Kadanoff (see
[EFS]) transformations. Haller and Kennedy for a given l use the hypothesis
of D-S complete analyticity of the constrained models to deduce Gibbsian-
ness of the measure resulting from the application of one transformation.

We conclude by a brief outline of the various steps needed in the proof
of Theorem 1.1. Higuchi [H] proves weak mixing, uniform in *, for the
Ising model above Tc . MOS proves, in general, that in two dimensions,
for regular domains, weak mixing implies strong mixing. In Appendix A.1
we prove that in two dimension strong mixing uniform in * for the
grandcanonical measure implies strong mixing uniform in *

�
=[*i ] for the

corresponding multi-grandcanonical measure. In Section 4 we prove results
about the comparison, in a finite volume 4, between multi-grandcanonical
and multi-canonical measures with precise estimates of the behavior in 4.
From this and previous points we deduce that, on a sufficiently large scale,
an effective (propagating to arbitrarily large, regular domains) finite size
condition is satisfied for multi-canonical constrained systems. Then, from
this finite size conditions, using the theory developed in [O], [OP] we are
able to perturbatively compute the renormalized Hamiltonian; and to
extract the potentials. The long range terms of the interaction potential are
computed starting from a cluster expansion whose convergence is directly
related to the validity of the above finite size condition. Finally the short
range terms are handled via a local central limit theorem for the multi-
grandcanonical measure.

2. NOTATION AND RESULTS

We introduce the general setup: the one of the finite state space, lattice
spin systems. Contrary to the usual treatments we drop the hypothesis of
translation invariance; indeed it will be replaced by spatial uniformity of
some basic estimates. We start by giving a list of basic definitions.

2.1. The Lattice

For x=(x1 ,..., xd ) # Rd we let |x| :=supk=1,..., d |xd |. The spatial struc-
ture is modeled by the d-dimensional lattice L :=Zd in which we let ei ,
i=1,..., d be the coordinate unit vectors. We shall denote by x, y,... the
sites in L and by 4, 2,... subsets of L. We consider L endowed with the
distance d(x, y)=|x& y|. We use 4c :=L"4 to denote the complement of
4. For 4 a finite subset of L (we use 4//L to indicate that 4 is finite),
|4| denotes the cardinality of 4. For x # L and l an odd integer we let
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Ql(x) :=[ y # L : d( y, x)�(l&1)�2] be the cube of side l centered at x;
for l an even integer we let instead Ql(x) :=[y # L : | y&(x+ê)|�l�2],
where ê :=(1�2,..., 1�2), be the cube of side l centered in x+ê (which
belongs to the dual lattice). We shall denote Ql(0) simply by Ql . Given
r>0 and 4/L we introduce the outer boundary of 4 by �r4 :=
[x � 4 : d(x, 4)�r]. We let also 4� r :=4 _ �r 4.

Given an integer l, we also introduce the rescaled lattice Ll :=(lZ)d

which is naturally embedded in L; we shall therefore regard points in Ll

also as points in L without further mention, more precisely we will make
the following identification: Ll % (i1 ,..., id )#(li1 ,..., lid ) # Z. We use i, j,...
to denote points in Ll and I,... to denote subsets of Ll . Analogously the
distance in Ll is denoted by dl(i, j), therefore for i, j # Ll we have
d(i, j)=ldl(i, j).

2.2. The Configuration Space

We suppose given a positive integer N # N+ and, for every x # L,
a positive integer Nx�N. We then introduce the following:

�� Configuration space of a single spin. For any x # L we have a
finite set 0x , |0x |=Nx+1. We identify 0x with [0, 1,..., Nx] which we
consider endowed with the discrete topology;

�� Configuration space in a subset 4/L. We set 0 (N)
4 :=}x # 4 0x ;

�� Configuration space in the whole L. We set 0(N) :=}x # L 0x

and equip it with the product topology.

We can therefore look at a configuration _ # 0(N) as a function
_: L [ [0, 1,..., L]. The integer _x#_(x) is called value of the spin at the
site x # 4 in the configuration _. For 4/L, we use _4 :=[_x # 0x , x # 4]
to denote the collection of spins in 4. For x # L we define the shift �x

(acting on 0(N)) by (�x_)y :=_y&x .
We also introduce C(0(N)) the space of continuous functions on 0

which becomes a Banach space under the norm & f & :=sup_ | f (_)| and
note that the local functions (i.e., the functions depending only on a finite
number of spins) are dense in C(0(N)). For f a local function depending
on the spins in 4//L, i.e., f (_)= f (_4), we let S( f )#supp( f ) :=4 be
the support of f.

In the case N=1 the spin _x takes values in [0, 1], i.e., we have a
lattice gas. In such a case we use the notation 0 :=[0, 1]L and denote by
', `,... typical elements of 0; the value 'x # [0, 1] is interpreted as the
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occupation number in x. Given ' # 0 we define a new configuration 'x

which is obtained from ' by flipping the occupation number in x, i.e.

('x)y :={'y

1&'x

if y{x
if y=x

2.3. The Potential

A potential 8=[84 , 4//L] is a family of functions labeled by
finite subsets of L and 84 : 0(N)

4 [ R. We introduce the following possible
conditions on 8:

�� Finite range. There exists r>0 such that 84=0 if diam(4)>r;

�� Translation invariance. For each x # L, 84(_)=84+x(�x_).

We note that the potentials (which do not need to satisfy the condi-
tions above) form a linear space. Given :�0, we introduce in it the norm
& }&: defined by

&8&: := sup
x # L

:
4 % x

e: |4| sup
_4 # 04

(N)
|84(_4)|

We also note that in the translation invariant case we can omit the first
supremum above.

Given 4//L and a potential 8 with bounded & }&0 norm, the energy
associated to a configuration _ when the boundary condition outside 4 is
(the restriction to 4c of ) { # 0, is given by:

E4(_ | {) := :
1 & 4{<

81 (_ b4 {) (2.1)

where

(_ b4 {)x :={_x

{x

if x # 4
if x � 4

Note that the sum on the r.h.s. of (2.1) is absolutely convergent (uniformly
in _ and {) by the boundedness of &8&0 . We also remark that for a finite
range potential the map { [ E4(_ | {) depends only on {�r4 .
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2.4. The Gibbs Measures

Given a potential 8 of bounded & }&0 norm, for each 4//L we
define the (finite volume) Gibbs measure in 4 with boundary condition {
as

+{
4(_) :=

1
Z{

4

exp[&E4(_ | {)]

where Z{
4 , called partition function, is the normalization constant, i.e.

Z{
4=Z{

4(8) := :
_ # 04

(N)

e&E4(_ | {)

Note that we have included the inverse temperature in the definition of
energy; in fact it will be kept fixed in our analysis.

We regard +{
4 also as a measure on the whole 0(N) by giving zero

mass to the configurations _ which do not agree with { on 4c. The (infinite
volume) Gibbs states associated to the potential 8 are then the measures
+ on 0(N) which satisfy the DLR equations

| +(d{) +{
4( f )=+( f ), for any 4//L, f # C(0(N))

For a translationally invariant lattice gas we observe that we have
8[x](')=&*'x+a for some constants *, a # R. We neglect the constant a
(which do not affect the definition of the Gibbs measure) and note that *
is interpreted as the chemical potential. We also introduce the activity
z # R+ by z :=e* which we use to parametrize lattice gases with different
chemical potentials. In such a case we write 8=(z, U ) where U=
[84 , 4//L, |4|>1] and call U the interaction. We shall also write
(sometimes) +{

4, z (resp. Z{
4(z)) in order to indicate explicitly the depen-

dence on the activity z.

2.5. Strong Mixing Conditions

In what follows we recall notions concerning some mixing properties
of Gibbs measures. Most of the theory has been, up to now, developed in
the finite range, translationally invariant case. Extension to not transla-
tionally invariant cases, when suitable uniform conditions hold, is, in most
of the cases, straightforward. In particular we will be concerned with the
so-called strong mixing condition which can be formulated in terms of
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exponential clustering of truncated expectation with respect to the Gibbs
measures in certain domains 4 with { boundary conditions when this
exponential clustering takes place uniformly in 4 and {. This strong mixing
condition implies uniqueness of infinite volume Gibbs measure and its
exponential clustering. It can be shown that finite volume strong mixing
condition, with constants uniform in the volume and in the boundary
conditions, is strictly stronger than the equivalent infinite volume notion
(see [Sh], [Ba], [DM], [CM]). As it has been shown by Dobrushin
and Shlosman (see [DS2], [DS3]) this strong mixing condition, supposed
to hold for any (finite or infinite) volume 4, is equivalent to many other
conditions like analyticity properties of thermodynamic and correlation
functions or tree-decay of semi-invariants. Interactions giving rise to this
kind of nice behavior have been called by Dobrushin and Shlosman com-
pletely analytical. Among their equivalent complete analyticity conditions,
Dobrushin and Shlosman have introduced suitable finite size conditions
that they call ``constructive conditions.'' They show that, supposing that
there exists a finite domain 4 such that the strong mixing condition is
satisfied with suitable (depending on 4) decay constants for all subsets of 4,
then a strong mixing condition holds for all (finite or infinite) volumes.

We refer to [MO2] for a discussion on the applicability of this point
of view. Indeed often the request of exponential clustering for arbitrary
shape does not fit with many reasonable applications. There are examples
(see [MO1]) where nice exponential mixing properties hold for regular
domains (like, for instances cubes) and in infinite volume, whereas they fail
to hold for domains with anomalous ratio between boundary and bulk,
implying violation of Dobrushin-Shlosman complete analyticity. In [O],
[OP], [MO1], [MO2], [MO3] another scenario has been introduced,
more suited to the renormalization group problematic. It can be called
``restricted complete analyticity'' or ``complete analyticity for regular
domains.'' This point of view refers to exponential mixing in finite volumes
which are multiples of a given cube of size l0 . In the framework of this
theory one can develop a constructive condition of the following kind: if
_l0 such that a suitable (depending on l0) mixing condition holds in the
cube Ql0

, then the same condition (possibly with worse constants) holds
for any multiple of Ql0

. This possibility of propagation from finite to
arbitrarily large (and even infinite) volumes is called ``effectiveness'' in
[MO2]. Subsequently many results have been obtained in the framework
of restricted complete analyticity that could have been problematic and are
even known to be false in the context of Dobrushin-Shlosman complete
analyticity (see, for instance [MO2], [MO3], [MOS], [SS]).

Given a measure + and two square integrable random variables f, g we
denote by +( f; g) :=+( fg)&+( f ) +(g) the covariance between f and g. For
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2//L we introduce +{
4; 2 as the relativization (projection) of the Gibbs

measure +{
4 to 0 (N)

2 , i.e.

+{
4; 2(_2) :=| +{

4(d`) 1`2=_2

We finally recall that the total variation distance between two measures
+, & on a finite set S is given by

Var(+, &) := 1
2 :

| # S

|+(|)&&(|)|# sup
X/S

|+(X )&&(X )|

If a, b # R, we let a 7 b :=min[a, b]. For a finite range potential we intro-
duce the following strong mixing condition.

Condition SM(l0) (Strong Mixing). Given an integer l0 we
say that the potential 8 satisfies SM(l0) if there exist two constants A, #>0
such that for any volume

4=.
i # I

Ql0
(i), I//Ll0

(2.2)

the following bound holds. For any x # �r 4 and any 2/4 we have

sup
{ # 0(N)

sup
a # 0x

Var(+{ bx a
4; 2 , +{

4; 2)�Ae&#d(x, 2) (2.3)

We next discuss finite size conditions which imply SM(l0). Let m be
an integer, m>r, and consider the cube Q3m( j), j # Lm . Given a particular
lattice direction ei we can partition Q3m( j) into three parallelepipeds having
d&1 sides equal to 3m and the last one equal to m (slices) with the mini-
mal side parallel to the ei direction (slice orthogonal to ei ). We write

Q3m( j)=Q (i, &)
3m ( j) _ Q (i, 0)

3m ( j) _ Q (i, +)
3m ( j) (2.4)

here Q (i, 0)
3m ( j) denotes the central slice.

Let P (i)
m ( j) be the set of all subsets of Q (i, 0)

3m ( j) which are unions of
cubes Qm( j). For V # P (i)

m ( j) let �(i, +)V, �(i, &)V denote the part of �rV in
the direction of ei , &ei respectively (opposite r-faces of V ). Given _, `, { # 0,
y # �(i, +)V, y$ # �(i, &)V, we denote by _ (i, +), `(i, &), { the configuration
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obtained from { by substituting in �(i, +)V, �(i, &)V the restrictions of _, `,
respectively:

_x if x # �(i, +)V
(_(i, +), `(i, &), {)x :={`x if x # �(i, &)V

{x otherwise

analogously we denote by _y , `(i, &), { the configuration obtained from { by
substituting to { in y, �(i, &)V the restrictions of _, `, respectively:

_x if x= y
(_y , `(i, &), {)x :={`x if x # �(i, &)V

{x otherwise

finally we denote by _y , `y$ , { the configuration obtained by substituting to
{ in y, y$ the restrictions of _, `:

_x if x= y
(_y , `y$ , {)x :={`x if x= y$

{x otherwise

of course

{(i, +), {(i, &), {#{y , {(i, &), {#{y , {y$ , {#{

We introduce the notation: ZV ({) :=Z{
V .

Condition C1(m, =1) (See [OP], Eq. (1.8)):

sup
j # Lm

sup
i # [1,..., d ]

sup
V # Pm

(i)( j)

sup
_, { # 0(N)

}ZV (_(i, +), _(i, &), {) ZV ({(i, +), {(i, &), {)
ZV (_(i, +), {(i, &), {) ZV ({(i, +), _(i, &), {)

&1 }<=1 (2.5)

Condition C2(m, =2):

sup
j # Lm

sup
i # [1,..., d ]

sup
V # Pm

(i)( j)

sup
y # �(i, +)V

sup
_, { # 0(N)

sup
: # [&, +]

}ZV (_y , _(i, &:), {) ZV ({y , {(i, &:), {)
ZV (_y , {(i, &:), {) ZV ({y , _(i, &:), {)

&1 }< =2

md&1 (2.6)
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Condition C3(m, =3) (see [O]):

sup
j # Lm

sup
i # [1,..., d ]

sup
V # Pm

(i)( j)

sup
y # �(i, +)V
y$ # �(i, &)V

sup
_, { # 0(N)

}ZV (_y , _y$ , {) ZV ({y , {y$ , {)
ZV (_y , {y$ , {) ZV ({y , _y$ , {)

&1 }< =3

m2(d&1) (2.7)

It is easy to show, using a telescopic argument, that there exists a con-
stants } such that C2(m, =2) implies C1(m, }=2) and C3(m, =3) implies
C2(m, }=3) (see [O]). It is also immediate to see that the results proven for
the translationally invariant case in [O], [OP], [MO2] extend to the
general case when the space uniform condition holds. We have indeed the
following result. Let

=(d ) :=[3(2d+1+1)]&d 2&2de&4 (2.8)

then condition C1(m, =(d )) implies the existence of a convergent cluster
expansion which, in turn, implies SM(m).

We remark that once we have proven the crucial point which is the
effectiveness, namely that C1(m, =(d )) implies SM(m), then, considering the
rescaled system whose new single spin variables, labeled by j # Lm , are the
old spin configurations in the blocks Qm( j), we can apply Dobrushin�
Shlosman's results [DS1], [DS2], [DS3] to get all their equivalent
mixing and analyticity properties of the Gibbs state for every ``multiple'' of
the Qm 's namely for all volumes 4 of the form (2.2). This is the restricted
complete analyticity namely the validity of the D-S equivalent properties
(see [DS2], [DS3]) for every volume of the form (2.2). In particular
SM(l0) is equivalent to:

Condition SM2(l0). Given an integer l0 we say that the potential
8 satisfies SM2(l0) if there exist two constants A, #>0 such that for every
pair of local functions f, g and every volume of the form (2.2)

sup
{ # 0(N)

|+{
4( f; g)|�A( |Sf | 7 |Sg | )& f & &g& e&#d(Sf , Sg ) (2.9)

where we recall Sf , Sg are the supports of f, g.

Indeed the implication C1(l0 , =(d )) O SM2(l0) can be obtained
directly via cluster expansion by rising the methods of references [O],
[OP]. We do not reproduce here the results of [O], [OP] but, looking
at the application to the renormalization group problem that will be
developed in next section, the reader could easily understand these results.
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2.6. Lattice Gases: Uniform Strong Mixing Conditions

We here consider just a finite range lattice gas (i.e., 0=[0, 1]L) and
introduce some uniform strong mixing conditions which are needed to
study the RG map. These conditions say��roughly speaking��that SM(l0)
holds uniformly in the external field (one body interaction). Unfortunately,
as discussed in the Introduction, we need such a condition also for some
non homogeneous external field. Such a condition plays also a crucial role
in the ergodic properties of the Kawasaki (conservative) dynamics, [Y].

Given a finite range lattice gas with translationally invariant inter-
action we introduce the following Condition. We recall z=exp[*] is the
activity.

Condition USM(A) (Uniform Strong Mixing). Given an
open set A�[0, �), we say that the interaction U satisfies USM(A) if
for each z # A there exists l0=l0(z) such that condition SM(l0) holds for
(z, U ). Furthermore the following is to be satisfied:

(i) for any closed set C�A we can take the constants l0 , A, #
uniform for z # C;

(ii) we can take A=A0z 7 z&1 for some other constant A0 indepen-
dent of z.

Remark. We note that for A=[0, =] _ [=&1, �) with = small
enough (depending on d, r and &8&0) the above conditions hold. Indeed
for z 7z&1 small, SM(1) follows from standard perturbative theory (for
instance by using Dobrushin single site criterion [D1]). we can therefore
safely replace the set [0, �) in Condition USM(A) by the compact set
[=, =&1]. To avoid delicate continuity questions we introduced (i) above as
an independent hypothesis. The same argument shows (ii) is automatically
satisfied; we have included it only for convenience.

Condition GUSM (Global Uniform Strong Mixing). We say
that Condition GUSM is satisfied if Condition USM(A) holds for
A=[0, �).

2.7. The Multi-grandcanonical State

Let l be a positive integer and 4/L a disjoint union of cubes of
side l, i.e.

4=.
i # I

Ql(i), I/Ll (2.10)
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Given a lattice gas with a finite range translationally invariant interaction U,
we next define a Gibbs measure in 04 which has a fixed chemical potential
in each cube Ql . We call such a measure a multi-grandcanonical state. Let
z
�

:=[zi # [0, �), i # I ] the measure +{
4, z

�
is then defined as a Gibbs measure

in 04 whose potential 8z
� =(z

�
, U ) is given by

8z
�1(') :={&'x log zi

81 (')
if 1=[x] and x # Ql(i)
if |1 |>1

If I//Ll the finite volume multi-grandcanonical measure is thus defined
by

+{
4, z

�
(') :=

1
Z{

4(z
�
)

`
i # I

zNi
i } exp {& :

1 & 4{<
|1 |>1

81 (' b4 {)= (2.11)

where Z{
4(z

�
) is the normalization constant and

Ni := :
x # Ql (i)

'x (2.12)

is the total number of particles in Ql(i). We stress that the multi-grand-
canonical state +{

4, z
�

does depend on l.
We shall need a stronger version of Condition USM which is for-

mulated in terms of the multi-grandcanonical state.

Condition MUSM(A) (Uniform Strong Mixing for Multi-
grandcanonical States). Given an open set A�[0, �), we say that
the interaction U satisfies MUSM(A) if the following condition holds. For
each closed set C�A there are constants l0 # N, A, #>0 such that for any
l integer multiple of l0 , any I//Ll and any z

�
# CI we have that for any

4 of the form given in (2.10) the multi-grandcanonical measure +{
4, z

�satisfies the bound (2.3).

Condition GMUSM (Global Uniform Strong Mixing for
Multi-grandcanonical States). If Condition MUSM(A) holds for
A=[0, �) we finally say that Condition GMUSM is satisfied.

We also give an effective finite size condition of type C1 which implies
MUSM(A). We note that if V # P(i)

m ( j) we have V=�k # V� Qm(k) for some
V� /Lm uniquely determined by V. We denote below by ZV, z

�
({) the multi-

grandcanonical partition function as defined in (2.11) with l=m.
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Condition MUC1(A). Given an open set A�[0, �] we say
that MUC1(A) holds for the interaction U if for each closed set C�A

there exists an integer m such that

sup
i # [1,..., d ]

sup
V # Pm

(i)(0)

sup
z
�
# CV�

sup
_, { # 0

}
ZV, z

�
(_(i, +), _(i, &), {) ZV, z

�
({(i, +), {(i, &), {)

ZV, z
�
(_(i, +), {(i, &), {) ZV, z

�
({(i, +), _(i, &), {)

&1 }�=(d ) (2.13)

Indeed, by exploiting the translationally invariance of U and following
the same argument as the one used in [O], [OP] it is easy to verify that
if MUC1 holds we have that also MUSM(A) holds.

Remark 1. In the high temperature regime, &U&0�= with = small
enough, it is not difficult to show (by using, for instance Dobrushin's single
site condition [D1]) that Condition MUC1([0, �)) holds.

Remark 2. We recall that by [DS2], [DS3] if SM(l0) holds for the
potential (z, U ) we can find a neighborhood O=(z) of z such that
MUSM(O=(z)) holds for the interaction U.

We stress that the above Remark 2 gives only a local implication. On
the global side the relationship between MUSM(A) and USM(A) is not
trivial. It is in fact possible to have a sort of layering phase transition which
prevents MUSM(A) to hold even though USM(A) does hold. On the
positive side, following an argument in the same spirit as [MOS] (i.e., that
no phase transition may happen in a one-dimensional boundary of a
regular two-dimensional domain), we rule out such a possibility in d=2.
We have in fact the following Theorem.

Theorem 2.1. Let d=2. Then USM(A) O MUSM(A).

On the negative side we show that the aforementioned pathology may
indeed happen. In Appendix A.2 we give in fact an ad hoc example of an
interaction U (in d=3) such that:

�� GUSM holds;

�� there exist z
�

and 4 of the form (2.10) such that the multi-
grandcanonical measure associated to (z

�
, U ) exhibits long range order. In

particular there exist {, {$ such that

lim inf
l � �

Var(+{$
4, z

�
; [0] , +{

4, z
�
; [0])>0
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We finally mention that, in the context of the two-dimensional Ising
model, the above theorem implies the following. Consider a standard Ising
model with a non-homogeneous external field which is however constant in
cubes of side l; then for each ;<;c , there exist l and L>>l such that
SM(L) holds uniformly in the external field.

2.8. Block Averaging Transformation (BAT)

Let +z be the (unique) infinite volume Gibbs measure of a finite range
translationally invariant lattice gas satisfying Condition SM(l0) and l an
integer. In this case we can define the block averaging transformation
directly in infinite volume. We partition the lattice L#Zd into cubes of
side l, i.e. L=�i # Ll

Ql(i). We recall that the random variable Ni has
been defined in (2.12); it takes values in the set

0(l)
i :=[0, 1,..., ld ] (2.14)

We then define the centered and renormalized random variables Mi as in
(1.3); it takes values in the set 0� (l)

i defined in (1.4). We finally let M
�

:=
[Mi , i # Ll]. The BAT renormalized measure, that we denote by + (l)

z , is
then the ( joint) probability distribution of M

�
under +z . Denoting the

renormalized configuration by m
�

=[mi # 0� (l)
i , i # Ll], the measure + (l)

z is
formally given by + (l)

z (m
�
)=+z(M

�
=m

�
). We avoid the troublesome issue of

describing Gibbs measures on non compact single spin space (see [EFS]
for a discussion) and consider + (l)

z only for finite l. Therefore the setup
previously described applies to the finite single spin space 0� (l)

i .
It is also possible to use a finite volume setup. Given the integer p we

will denote by 4p//L: a cube with side 2dlp. We have 4p=�i # Ip
Ql(i)

where Ip//Ll is a cube of side 2dp. Let +{
4p , z be the finite volume Gibbs

measure for our lattice gas with activity z enclosed in 4p with { boundary
condition. We denote by + (l, {)

Ip , z the finite volume renormalized measure aris-
ing from the application to +z, p of the Block Averaging Transformation on
scale l; it is defined as:

+ (l, {)
Ip , z ([mi , i # Ip]) :=+{

4p , z([M i=mi , i # Ip]), mi # 0� (l)
i (2.15)

2.9. Main Results

We first discuss the case when the global Condition GMUSM holds.
The most relevant example is the standard two-dimensional Ising model for
T>Tc . In such a case we are able to prove that the renormalized measure
+(l)

z is, for each (finite) l large enough, Gibbsian w.r.t. a potential 8(l) of

850 Bertini et al.



bounded & }&: norm (for suitable :>0). We can furthermore control the l

dependence of the norm &8(l)&: . We note (see [IS], [N]) that + (l)
z con-

verges weakly to }i # Ll
.i where .i denotes a standard Gaussian measure.

Accordingly, 8(l) should converge to the interaction of independent har-
monic oscillators. Unfortunately, as the limiting interaction has not finite
norm (since the limiting single spin space is unbounded), this convergence
cannot be described in the & }&: norm. However this lack of Convergence
affects only the (somehow trivial) short range part of the interaction; we
will decompose the potential into a short and a long range part 8(l)=
8(l), sr+8(l), lr (_} # N: 8 (l), sr

X #0 if diam(X )�}). We then introduce a
large field cutoff (diverging as l � �) to control the short range part: it
will converge to the potential of independent harmonic oscillator for values
of the image variables within the cutoff. We note that this result would be
false for large image variables. The precise statement is given in the
following Theorem.

Theorem 2.2. Let U satisfy GMUSM. Then there exists :>0 such
that for any z # (0, �) and l large enough + (l)

z is a translationally invariant
Gibbs measure w.r.t. a potential 8(l) for which

&8(l)&:�K(l)

for some constant K(l)<�. Furthermore it is possible to decompose the
potential into a short and a long range part, 8(l)=8(l), sr+8(l), lr, such
that _} # N: 8 (l), sr

I #0 if diam(I )�} and the following holds:

(i) for the same : as before

lim
l � �

&8(l), lr&:=0

(ii) there exists a constant a>0 such that

lim
l � �

sup
mI # 0� I

(l)

|mI |�la

|8 (l), sr
I (mI)|=0, for any I//Ll , |I |�2

lim
l � �

sup
mi # 0� i

(l)

|mi |�la

|8 (l), sr
[i ] (mi )+ 1

2m2
i |=0, for any i # Ll

When we assume only the local Condition MUSM(A) our results are
much weaker. Before discussing them, let us first note that for the standard
two-dimensional Ising model this Condition holds for T�Tc away from
the phase coexistence line z=z* (z* corresponds to zero magnetic field
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in the spin variables), i.e., for each T�Tc , MUSM(A) holds for A=
[0, �)"[z*]. We are not able to deal directly with the BAT defined in
infinite volume, but we have to start from the finite volume transformation
and take the thermodynamic limit. Moreover, we need to introduce a large
field cutoff also in the long range part of the interaction. These difficulties
are of course related to the limiting single spin space for which the usual
(i.e., uniform in all possible b.c.) Gibbsian formalism do not apply. We
refer to [EFS] for a discussion on the problems connected with the intro-
duction of a norm for interactions defined on a non compact space. Our
results are formulated as follows.

Theorem 2.3. Let U satisfy Condition MUSM(A) and z>0,
z # A. Let also 8(l, {) be the (finite volume) potential associated to the
(finite volume) renormalized measure + (l, {)

Ip , z . Then it is possible to decom-
pose the potential into a short and a long range part, 8(l, {)=8(l, {), sr+
8(l, {), lr, such that _} # N: 8 (l, {), sr

I #0 of diam(I )�} and the following
holds. There is a constant ===(z)>0 such that for any I//Ll and any
l large enough

_ lim
p � �

8 (l, {), lr
I (mI)=: 8 (l), lr

I (mI), uniformly for mI # 0� (l)
I

|mI |�= - / |Ql |, { # 0

_ lim
p � �

8 (l, {), sr
I (mI)=: 8 (l), sr

I (mI), uniformly for mI # 0� (l)
I , { # 0

(2.16)

Furthermore, there are :=:(z)>0, a=a(z)>0 such that for the same
===(z) as before

lim
l � �

:
I % 0

e: |I | sup
mI # 0� I

(l)

|mI |�= - / |Ql|

|8 (l), lr
I (mI)|=0

lim
l � �

sup
mI # 0� I

(l)

|mI |�la

|8 (l), sr
I (mI)|=0 for any I//Ll , |I |�2

lim
l � �

sup
mi # 0� i

(l)

|mi |�la

|8 (l), sr
[i ] (mi )& 1

2m2
i |=0 for any i # Ll

We think that with the methods we used to prove Theorem 2.3 it
would be also possible to get weak Gibbsianness of the renormalized
measure [BKL].
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Warnings:

�� Taking advantage of the symmetry of our Conditions w.r.t. the
map z [ z&1, we shall assume, without loss of generality, that all the
activities are bounded by 1. This will be used extensively without further
mention.

�� We denote by C a generic positive constant whose numerical value
can change from line to line. From the statements it will appear clear from
which parameters it depends on.

3. COMPUTING THE RENORMALIZED POTENTIAL VIA
CLUSTER EXPANSION

In this section we discuss the BAT transformation in finite volume. We
will compute the renormalized interaction via a cluster expansion: the con-
vergence of the expansion will be ensured by the validity of condition
C1(m, =(d )) for the constrained (multi-canonical) systems. This condition
C1, in turn, will be deduced from the MUSM property of the original
system in Section 5.

To simplify notation we write the Boltzmann factor (with { bound-
ary condition) for a configuration ' in the volume 4, ' # [0, 1]4, as
exp(+H4(' | {)) where

H4(' | {) := &E4(' | {) (3.1)

Let us set L :=dl; given the odd integer p, let 4p be the cube with side
2dlp given by

4p :=

{x=(x1 ,..., xd ) # L:&dl \ p+
1
2++dl+1

�xj�+dl \ p+
1
2+ , j=1,..., d= dl even

{x=(x1 ,..., xd ) # L:&\dlp+
dl&1

2 ++dl

�xj�dlp+
dl&1

2
, j=1,..., d= dl odd

We can write 4p=�i # Ip
Ql(i) where Ip//Ll is the cube of side 2dp given

by
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Ip :=

{i # Ll : &d \p+
1
2++d+1

�x j�+d \p+
1
2+ , j=1,..., d= if d is even

{i # Ll : &\dp+
d&1

2 ++d

�x j�dp+
d&1

2
, j=1,..., d= if d is odd

Let us introduce the quantity:

Z (l, {)
4p , n

�
:= :

' # 04p
(n

�
)

eH4p(' | {) (3.2)

where n
�
=[ni , i # Ip] # 0 (l)

Ip
:=}i # Ip

0 (l)
i #[0, 1,..., ld ]Ip and

0(ni)
i :=[' # [0, 1]Ql (i): Ni (')=n i ], 0 (n

�
)

4p
:= }

i # Ip

0 (ni)
i (3.3)

It is convenient to look at the renormalized measure + (l, {)
Ip , z in (2.15) in

terms of the variables n
�
; such measure is Gibbs w.r.t. to the renormalized

Hamiltonian given by

H (l, {)
4p

(n
�
)=log Z (l, {)

4p , n
�

(3.4)

Given n
�

# 0 (l)
Ip

; we can look at the quantity Z (l, {)
4p , n

�
defined in (3.2) as the

partition function of a (generally not translationally invariant) system
which is the original lattice gas constrained to have fixed values of the total
number of particles in each block Ql(i), i # Ip . Its elementary configura-
tional variables are the original spin configurations in each block Ql(i)
compatible with the assigned value ni of Ni namely the set 0 (n

�
)

4p
defined in

(3.3). The elements of 0 (ni)
i will be called block variables not to be confused

with the renormalized variables ni . We also call multi-canonical these con-
strained systems.

We will consider blocks of these block variables of size d; these
corresponds to the blocks QL(i) with L=dl in the original variables. The
reason for this choice will appear clear in the following sections: it
corresponds to the minimal size for which we are able to prove, for the
constrained model, the validity of our condition C1(m, =(d )). In other
words, to meet Condition C1(m, =(d )) we have to choose m=d and l
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sufficiently large. With respect to the general setting of Section 2 we have
0i=0 (ni)

i whereas the potential is the one inherited by the original model.
In particular, if we choose l larger than the range r of the original inter-
action, then only contiguous blocks will interact. We repeat that the size of
the blocks that in Section 2 was generically called m now equals d. The
main result of this section is stated as follows, where, for V # P (k)

L (i), we let
V� //Ll be such that V=�j # V� Ql( j).

Theorem 3.1. Consider a d-dimensional lattice gas with finite
range, translationally invariant interaction. Let l # N and suppose there
exists a closed D�[0, 1] such that

sup
k=1,..., d

sup
V # PL

(k)(i)

sup
n
�

# DV�
(l)

sup
_, `, {

}
ZV, n

�
(_ (k, +), _(k, &), {) ZV, n

�
(`(k, +), `(k, &), {)

ZV, n
�
(_ (k, +), `(k, &), {) ZV, n

�
(`(k, +), _(k, &), {)

&1 }�$(l) (3.5)

where D (l)
V� :=( |Ql | D)V� & 0 (l)

V� and $(l) � 0 as l � �. Then, the measure
+(l, {)

Ip , z defined in (2.15) is Gibbsian w.r.t. a potential 8(l, {)=

[8 (l, {)
X , X/Ip]. Let

M (l)
X :=\ |Ql | D&\(z)

- / |Ql | +
X

, 0� (l)
X

We have the following:

(i) For each X/Ip with dl(X, I c
p)>3d and mX # M (l)

X , 8 (l, {)
X does

not depend on { (and Ip). In particular for each X//Ll

_ lim
p � �

8 (l, {)
X (mX)=: 8 (l)

X (mX), uniformly for mX # M (l)
X , { # 0 (3.6)

(ii) Let 8(l)=[8 (l)
X , X//Ll], we have a decomposition 8(l)=

8(l), sr+8(l), lr where 8 (l), sr
X #0 if diaml(X )>3d and there are constants

:>0, C such that:

:
X % 0

e: |X | sup
mX # M X

(l)
|8 (l), lr

X (mX)|�C$(l) (3.7)

Remark. The potential 8 (l, {)
X will be explicitly constructed (see

(3.70) and (3.69)) below. In Section 5 we will show that we can take

855RG Transformations under Strong Mixing Conditions



8(l), sr
[i ] =&m2

i �2 and there exists a constant a>0 such that for each X,
|X |�2

sup
mX # MX

(l)

|mX |<la

|8 (l), sr
X (mX)|<#(l)

with #(l) � 0 if l � �.
Similarly to what has been done in [HK], in order to compute the

renormalized potential and prove Theorem 3.1, we are going to apply to
the constrained systems the method developed in [O], [OP]. To simplify
the exposition we will treat in detail only the two-dimensional case. An
analogous treatment can be developed for the d-dimensional case along the
lines of [OP]. For the same reason, we discuss only the case of periodic
boundary condition in 4p ; the case of general boundary condition can be
treated along the same lines with minor changes giving rise to estimates
uniform in {.

In the rest of this section we will express the coordinates of points and
components of vectors in LL in L units. Let us denote by e1 , e2 , respec-
tively, the coordinate unit vectors in LL : e1=(1, 0) horizontal, e2=(0, 1)
vertical. Recall that since now d=2, we have L=2l. We further partition
LL into four sub-lattices of spacing 2L:

LL=LA
2L _ LB

2L _ LC
2L _ LD

2L

where

LA
2L :=[i=(i1 , i2) # LL : i1=2j1 , i2=2j2 , for some integers j1 , j2]

LB
2L :=LA

2L+e2
(3.8)

LC
2L :=LA

2L+e1+e2=LB
2L+e1

LD
2L :=LA

2L+e1=LC
2L+e2=LB

2L+e1+e2

We also set, for i # LL :

Ai :=QL(2i)

Bi :=QL(2i+e2)
(3.9)

Ci :=QL(2i+e1+e2)

Di :=QL(2i+e1)
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Fig. 1. Partition of the lattice LL (see (3.8), (3.9)).

(See Fig. 1). Then we can partition the torus 4p into the union of the
L-blocks of the four types: A, B, C, D:

4p=Ap _ Bp _ Cp _ Dp

where

Ap :={Ai : |ij |�
p&1

2
, j=1, 2=

and similarly for Bp , Cp , Dp .
Given a renormalized configuration of our multi-canonical model and a

block Ai we denote by :i a generic original lattice gas configuration compatible
with the four renormalized configurations [nj , j # Ll : Ql( j)/Ai ]; in other
words: :i # }j : Ql( j)/Ai

0 (nj)
j (recall that l=L�2). Similarly for ;i , #i , $i . We

simply denote by :, ;, #, $ the configurations in Ap , Bp , Cp , Dp , respectively.
Let us now quickly describe our strategy. We want to transform the

constrained system into a polymer system (see, for instance, [GrK],
[KP], [D3]) which, by condition (3.5) will turn out to be in the small
activity region. To be more precise we shall prove the following formula:

Z(l)
4p , n

�
=Z� (l)

4p , n
�
5 (l)

4p , n
�

(3.10)
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where Z� (l)
4p , n

�
is factorized in the sense that it has the form of a product of

partition functions in suitable volumes not depending on p; the dependence
on n

�
of the single factors is local. The partition function Z� (l)

4p , n
�

describes the
reference system around which we perform a perturbative expansion. On
the other hand, 5 (l)

4p , n
�

is the partition function of a gas of polymers; it has
the form

5 (l)
4p , n

�
=1+ :

k�1

:
R1 ,..., Rk

`
k

j=1

`Rj
(n

�
) (3.11)

where the polymers Rj that will be defined below, are geometrical local
objects living on scale L=2l; the sum in (3.11) is restricted to ``non-inter-
secting'' polymers so that the unique interaction between polymers is a
pairwise hard core exclusion. Finally the activity `Rj

(n
�
) depends only on

the ni 's with i localized on the polymer. It is already clear from this
preliminary discussion that expression (3.11) is well suited to compute
renormalized potential: in order to get good estimates of the norm of the
renormalized potential we shall need that the polymer system described by
5 (l)

4p , n
�

is in the small activity region.
To get expression (3.10) we will perform a sequence of block decima-

tions like in [O], [OP]. We start by integrating over the $-variables, then
the #-variables, the ;-variables and, finally, the :-variables. Using Condi-
tion (3.5) we will be able to prove that at each step of decimation the
system described by the surviving variables is weakly coupled.

We use the following notation for the interaction (which is defined
independently of the multi-canonical constraints) between two sets 41 and 42 :

W41 , 42
('41

| '42
) :=W('41

| '42
)

=H41 _ 42
('41

, '42
)&H41

('41
)&H42

('42
) (3.12)

where '41
, '42

# [0, 1]41, [0, 1]42, respectively. Recalling that L is larger
than the range of the interaction, we can write:

H4p
(_4p

)= :
k1 : Ak1

# Ap

HAk1
(:k1

)+ :
k2 : Bk2

# Bp

HBk2
(;k2

)+WBk2
, Ap

(;k2
| :)

+ :
k3 : Ck3

# Cp

HCk3
(#k3

)+WCk3
, Ap _ Bp

(#k3
| ;, :)

+ :
k4 : Dk4

# Dp

HDk4
($k4

)+WDk4
, Ap _ Bp _ Cp

($k4
| #, ;, :) (3.13)
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Again the above decomposition of H holds independently of the constraints
on the number of particles in the blocks; in (3.13) we have only used that
L>r so that there is no direct interaction between blocks belonging to the
same sub-lattice.

To simplify notation we shall often omit from H, W the subscripts
referring to the various domains; the symbols used for the arguments of the
functions H, W should be sufficiently clarifying; moreover we will also omit
the explicit extensions of the sums (or products) over k1 , k2 , k3 , k4 as well
as the one over : # }i : Ql (i)/Ap

0(ni), and similarly for ;, #, $ we have:

Z (l)
4p , n

�
=:

:

`
k1

exp(H(:k1
)) :

;

`
k2

exp(H(;k2
)+W(;k2

| :))

_:
#

`
k3

exp(H(#k3
)+W(#k3

| ;, :)) :
$

`
k4

exp(H($k4
)

+W($k4
| #, ;, :)) (3.14)

We first perform the sum over $ variables; using that the sums over dif-
ferent $k4

are decoupled since the size L of the blocks is larger than the
range of the interaction, we get:

Z (l)
4p

=:
:

} } } :
;

} } } :
#

} } } `
k4

ZDk4
((;, #)u, (;, #)d, :) (3.15)

where by ZDk4
((;, #)u, (;, #)d, :)) we denote the partition function in Dk4

with boundary conditions (;, #)u on the top (up) and (;, #)d on the bottom
(down) of Dk4

(see Fig. 2). More explicitly (;, #)u is given by the restriction

Fig. 2. Boundary conditions for the partition function ZDk4
.
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of ;, # to (simply called configuration in): QL(2k4+e2) _ QL(2k4+e2+e1)
_ QL(2k4+e2+2e1)#Bk4

_ Ck4
_ Bk4+e1

whereas (;, #)d is the configura-
tion in QL(2k4&e2) _ QL(2k4&e2+e1) _ QL(2k4&e2+2e1)#Bk4&e2

_
Ck4&e2

_ Bk4+e1&e2
. Finally : in (3.15) denotes the configuration in

QL(2k4) _ QL(2k4+2e1)#Ak4
_ Ak4+e1

.
Notice that we are also presently omitting the explicit dependence on

n
�

and L. Let 0 denote a given reference configuration in 0 (n
�
)

4p
. We write

ZDk4
((;, #)u, (;, #)d, :))

=\
ZDk4

((;, #)u, (;, #)d, :) ZDk4
((0)u, (0)d, :)

ZDk4
((;, #)u, (0)d, :) ZDk4

(0)u, (;, #)d, :)
&1+1+

_
ZDk4

((;, #)u, (0)d, :) ZDk4
((0)u, (;, #)d, :)

ZDk4
((0)u, (0)d, :)

(3.16)

Where by (0)u, (0)d, : we mean the boundary condition on Dk4
obtained

from (;, #)u, (;, #)d, : by substituting (;, #) with (0) both in the ``up'' and
``down'' blocks; similarly (;, #)u, (0)d, : and (0)u, (;, #)d, : denote the bound-
ary conditions on Dk4

obtained from (;, #)u, (;, #)d, :, by substituting
(;, #) with (0) only in the ``down'' and ``up'' blocks, respectively. We call the
above operation ``splitting'' of the partition function ZDk4

((;, #)u, (;, #)d, :)
in the vertical e2 direction. We set

8(4)
D (:, ;, #) :=

ZDk4
((;, #)u, (;, #)d, :) ZDk4

((0)u, (0)d, :)

ZDk4
((;, #)u, (0)d, :) ZDk4

((0)u, (;, #)d, :)
&1 (3.17)

The quantity 8 (4)
D (:, ;, #) can be considered as an effective interaction

potential between :, ;, # variables coming from decimation of the $
variables. In what follows we will exploit condition (3.5) above to deduce
that 8 (4)

D (:, ;, #) and other similar quantities are uniformly small.
We can write:

Z (l)
4p

=:
:

} } } :
;

} } } :
#

`
k3

exp(H(#k3
)+W(#k3

| ;, :))

_ZDk3+e2
((0)u, (;, #k3

)d, :) ZDk3
((;, #k3

)u, (0)d, :)

_`
k4

[ZDk4
((0)u, (0)d, :)]&1 `

k4

(1+8 (4)
Dk4

(:, ;, #)) (3.18)

In (3.18) above we associated to every Ck3
block in Cp the two terms

ZDk3+e2
((0)u, (;, #k3

)d, :), ZDk3
((;, #k3

)u, (0)d, :) coming from the splitting of
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the original partition functions over the volumes Dk3+e2
, Dk3

, respectively.
Notice that

:
#k3

exp(H(#k3
)+W(#k3

| ;, :)) ZDk3+e2
((0)u, (;, #k3

)d, :) ZDk3
((;, #k3

)u, (0)d, :)

=ZC� k3
((0)u, (0)d, :, ;)#ZC� k3

((0)u, (0)d, (:, ;) l, (:, ;)r) (3.19)

where

C� k3
:=Ck3

_ Dk3
_ Dk3+e2

(3.20)

is a 3L_L rectangle DCD centered at Ck3
(see Fig. 3) and ZC� k3

((0)u, (0)d,
(:, ;) l, (:, ;)r) is the partition function in C� k3

with (0) boundary condition
on the top and on the bottom; (:, ;) l on the left and (:, ;)r on the right
of Ck3

. Here by ``on the left'' of C� k3
we mean ``in Ak3+e2

_ Bk3
_ Ak3

'' and
by ``on the right of C� k3

we mean ``in Ak3+e2+e1
_ Bk3+e1

_ Ak3+e1
;'' see

Fig. 3. In what follows we will continue to use ``on the top,'' ``on the bot-
tom,'' ``on the left'' and ``on the right'' for the boundary conditions to a
volume in a similar sense.

Fig. 3. Boundary conditions for the partitions function ZC� k3
.
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The operation described by equation (3.19) above is called ``gluing'' of
the partition functions ZDk3+e2

((0)u, (;, #k3
)d, :), ZDk3

((;, #k3
)u, (0)d, :) on

Ck3
in the vertical e2 direction.
Now if in (3.18) we multiply and divide by

`
k3

ZC� k3
((0)u, (0)d, (:, ;) l, (:, ;)r),

we get:

Z (l)
4p , n

�
=:

:

`
k1

exp(H(:k1
)) :

;

`
k2

exp(H(;k2
)

+W(;k2
| :)) `

k3

ZC� k3
((0)u, (0)d, (:, ;) l, (:, ;)r)

_:
#

+:, ;
3 (#) `

k4

(1+8 (4)
Dk4

(:, ;, #)) `
k4

[ZDk4
((0)u, (0)d, :)]&1

(3.21)

where +:, ;
3 (#) is the product (Bernoulli) probability measure on #

parametrically depending on :, ; given by:

+:, ;
3 (#) :=`

k3

+:, ;
Ck3

(#k3
) (3.22)

where

+:, ;
Ck3

(#k3
) :=

1
ZC� k3

((0)u, (0)d, (:, ;) l, (:, ;)r)
exp(H(#k3

)+W(#k3
| ;, :))

_ZDk3+e2
((0)u, (;, #k3

)d, :) ZDk3
((;, #k3

)u, (0)d, :) (3.23)

At this moment we apply again a ``splitting'' but now we act on the parti-
tion function ZC� k3

((0)u, (0)d, (:, ;) l, (:, ;)r) in the horizontal e1 direction;
namely we write:

ZC� k3
((0)u, (0)d, (:, ;) l, (:, ;)r)

=\
ZC� k3

((0)u, (0)d, (:, ;) l, (:, ;)r) ZC� k3
((0)u, (0)d, (0) l, (0)r)

ZC� k3
((0)u, (0)d, (:, ;) l, (0)r) ZC� k3

((0)u, (0)d, (0) l, (:, ;)r)
&1+1+

_
ZC� k3

((0)u, (0)d, (:, ;) l, (0)r) ZC� k3
((0)u, (0)d, (0) l, (:, ;)r)

ZC� k3
((0)u, (0)d, (0) l, (0)r)

(3.24)
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We set

\
ZC� k3

((0)u, (0)d, (:, ;) l, (:, ;)r) ZC� k3
((0)u, (0)d, (0) l, (0)r)

ZC� k3
((0)u, (0)d, (:, ;) l, (0)r) ZC� k3

((0)u, (0)d, (0) l, (:, ;)r)
&1+ :=8 (3)

Ck3
(:, ;)

(3.25)

We remark that:

:
;k2

exp(H(;k2
)+W(;k2

| :))_ZC� k2&e1
((0)u, (0)d, (0) l, (:, ;k2

)r)

_ZC� k2
((0)u, (0)d, (:, ;k2

) l, (0)r)=ZB� k2
((0), :) (3.26)

where B� k2
is the set, centered at Bk3

, having the shape of a capital H given by:

B� k2
:=Bk2

_ Ck2
_ Ck2&e1

_ Dk2
_ Dk2&e1

_ Dk2&e1+e2
_ Dk2+e2

(3.27)

see Fig. 4. The above operation, described in (3.26) above, is a ``gluing'' of
the partition functions ZC� k2&e1

((0)u, (0)d, (0) l, (:, ;k2
)r), ZC� k2+e1

((0)u, (0)d,
(:, ;k2

) l, (0)r) on Bk2
in the e1 direction.

Fig. 4. The set B� k2
and the boundary conditions for the partition function ZB� k2

.
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The boundary conditions on B� k2
in the partition function ZB� k3

((0), :)
are 0 everywhere except for the A-blocks Ak2+e2

, Ak2
touching on the top

and on the bottom, respectively, the block Bk3
. We write:

ZB� k2
((0), :)=: ZB� k2

((0), (:)u, (:)d ) (3.28)

with (:)u, (:)d, given, respectively, by the restriction of : to Ak2+e2
, Ak2

.
Similarly for the term ZDk4

((0)u, (0)d, :)) appearing (at the power &1)
in (3.18) we can write

ZDk4
((0)u, (0)d, :)=ZDk4

((0)u, (0)d, (:) l, (:)r)

#ZDk4
((0), (:) l, (:)r) (3.29)

where by (0), (:) l, (:)r we mean the boundary conditions, outside Dk4
given

by 0 everywhere except for the two blocks Ak4
, Ak4+e1

, contiguous to Dk4
;

(:) l, (:)r are the restrictions of : to Ak4
, Ak4+e1

, respectively.
Now we perform a ``splitting'' in the e1 direction of the quantity

[ZDk4
((0), (:) l, (:)r)]&1; namely we write:

[ZDk4
((0), (:)l, (:)r)]&1

=\
ZDk4

((0), (:) l, (0)r) ZDk4
((0), (0) l, (:)r)

ZDk4
((0), (:) l, (:)r) ZDk4

((0), (0) l, (0)r)
&1+1+

_
ZDk4

((0), (0)l, (0)r)

ZDk4
((0), (:) l, (0)r) ZDk4

((0), (0) l, (:)r)
(3.30)

We set:

\
ZDk4

((0), (:) l, (0)r) ZDk4
((0), (0) l, (:)r)

ZDk4
((0), (:) l, (:)r) ZDk4

((0), (0) l, (0)r)
&1+=: 9 (4)

Dk4
(:) (3.31)

We introduce the product probability measure +:
2(;) on ;, parametri-

cally dependent on :, given by:

+:
2(;) :=`

k2

+:
Bk2

(;k2
) (3.32)
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where

+:
Bk2

(;k2
) :=

1
ZB� k2

((0), (:)u, (:)d )
exp(H(;k2

)+W(;k2
| :))

_ZC� k2&e1
((0)u, (0)d, (0) l, (:, ;k2

)r)

_ZC� k2
((0)u, (0)d, (:, ;k2

) l, (0)r) (3.33)

Now we proceed similarly to the step leading to (3.21). We multiply
and divide the expression on the r.h.s. of (3.21) by

`
k2

ZB� k2
((0), (:)u, (:)d )

by inserting in the r.h.s. of (3.21) the expression given by (3.33) and after
operating the splitting described in (3.24), the gluing described in (3.26)
and the splitting described in (3.30), we get:

Z (l)
4p , n

�
=:

:

`
k1

exp(H(:k1
))[ZDk1+e1

((0), (:k1
)l, (0)r) ZDk1

((0), (0)l, (:k1
)r)]&1

_`
k2

ZB� k2
((0), (:)u, (:)d ) :

;

+:
2(;) `

k3

[ZC� k3
((0))]&1

_`
k3

(1+8 (3)
Ck3

) :
#

+:, ;
3 (#)

_`
k4

(1+8 (4)
Dk4

(:, ;, #)) `
k4

(1+9 (4)
Dk4

(:)) `
k4

[ZDk4
((0))]&1 (3.34)

where we used the shorthand notation ZC� k3
((0)) for ZC� k3

((0)u, (0)d,
(0) l, (0)r) and ZDk4

((0)) for ZDk4
((0)u, (0)k, (0) l, (0)r).

Now we perform, on the partition function ZB� k2
((0), (:)u, (:)d ), a split-

ting a bit different with respect to the previous ones. Let Fk2
be the horizon-

tal L_3L rectangle CBC contained in B� k2
:

Fk2
=Bk2

_ Ck2
_ Ck2&e1

(3.35)
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Fig. 5. The set Fk2
and the boundary conditions for the partition function ZFk2

.

We can write

ZB� k2
((0), (:)u, (:)d )

= :
($)u, ($)d

exp[H(($)u)+(H(($)d )+W((:)u | ($)u)+W((:)d | ($)d )]

_\
ZFk2

((0), (:, $)u, (:, $)d ) ZFk2
((0), (0)u, (0)d )

ZFk2
((0), (:, $)u, (0)d ) ZFk2

((0), (0)u, (:, $)d )
&1+1+

_
ZFk2

((0), (:, $)u, (0)d ) ZFk2
((0), (0)u, (:, $)d )

ZFk2
((0), (0)u, (0)d )

(3.36)

where, for a generic $ # }j : Ql ( j)/Dp
0(nj) we denote by ($)u the restriction

of $ to Dk2&e1+e2
_ Dk2+e2

whereas we denote by ($)d the restriction of $
to Dk2&e1

_ Dk2
; by (0), (:, $)u, (:, $)d we mean boundary conditions on

Fk2
given by (:, $)u on the top, (:, $)d on the bottom and 0 elsewhere (see

Fig. 5).
Let F (u)

k2
, F (d )

k2
be the ``horseshoe'' shaped domains given by:

F (u)
k2

:=Bk2
_ Ck2

_ Ck2&e1
_ Dk2&e1+e2

_ Dk2+e2 (3.37)
F (d )

k2
:=Bk2

_ Ck2
_ Ck2&e1

_ Dk2
_ Dk2&e1
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File: 822J 243037 . By:XX . Date:03:11:99 . Time:12:32 LOP8M. V8.B. Page 01:01
Codes: 1673 Signs: 682 . Length: 44 pic 2 pts, 186 mm

Fig. 6. The two domains F u
k2

(solid line) and F d
k2

(dashed line) are depicted.

(see Fig. 6). From (3.36) we easily get:

ZB� k2
((0), (:)u, (:)d )=

ZF k2
(u)((0), (:)u) ZF k2

(d )((0), (:)d )

ZFk2
((0), (0)u, (0)d )

(1+8 (2)
Bk2

(:)) (3.38)

where ZF k2
(u)((0), (:)u) is the partition function on the domain F (u)

k2
with

boundary conditions 0 everywhere except for Ak2+e2
where they take the

value (:)u (#the restriction of : to Ak2+e2
); similarly ZF k2

(d )((0), (:)d ) is the
partition function on the domain F (d )

k2
with boundary conditions 0 every-

where except for Ak2
where they take the value (:)d (#the restriction of :

to Ak2
); finally 8 (2)

Bk2
(:) is defined as:
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8 (2)
Bk2

(:) := :
($)u, ($)d

+~ :
k2

(($)u, ($)d )

_\
ZFk2

((0), (:, $)u, (:, $)d ) ZFk2
((0), (0)u, (0)d )

ZFk2
((0), (:, $)u, (0)d ) ZFk2

((0), (0)u, (:, $)d )
&1+ (3.39)

where +~ :
k2

(($)u, ($)d ) is a probability measure on } i : Ql (i)/Dp & B� k2
0 (ni)

parametrically dependent on :k2+e2
, :k2

given by:

+~ :
k2

(($)u, ($)d )=exp(H(($)u)+H(($)d )+W((:)u | ($)u)+W((:)d | ($)d ))

_
ZFk2

((0), (:, $)u, (0)d ) ZFk2
((0), (0)u, (:, $)d )

ZF k2
(u)((0), (:)u) ZF k2

(d )((0), (:)d )
(3.40)

Indeed +~ :
k2

(($)u, ($)d ) has the form of a product measure over the ``up'' and
``down'' variables but in (3.39) we are averaging, with respect to +~ :

k2
, a

function which couples these variables so that the result is a 8 (2)
Bk2

which is
a non-factorized function of (:)u, (:)d.

By inserting (3.38) into (3.34) we get

Z (l)
4p , n

�
=:

:

`
k1

exp(H(:k1
))[ZDk1

((0), (:k1
)l, (0)r) ZDk1&e1

((0), (0)l, (:k1
)r)]&1

_ZF (u)
k1&e1

((0), (:k1
)u) ZF k1

(d )((0), (:k1
)d ) `

k2

(1+8 (2)
Bk2

(:))[ZFk2
(0)]&1

_:
;

+:
2(;) `

k3

[ZC� k3
((0))]&1 `

k3

(1+8 (3)
Ck3

(:, ;))

_:
#

+:, ;
3 (#) `

k4

(1+8 (4)
Dk4

(:, ;, #)) `
k4

(1+9 (4)
Dk4

(:)) `
k4

ZDk4
((0))

(3.41)

where we have used the shorthand forms ZDk1
((0), (:k1

) l), respectively
ZDk1&e1

((0), (:k1
)r), for ZDk1

((0), (:k1
) l, (0)r), ZDk1&e1

((0), (0) l, (:k1
)r) and

ZFk2
(0) for ZFk2

((0), (0)u, (0)d ).
We notice that if in (3.41) above we neglect all the ``small quantities''

8 and 9 and we use that +:
2(;) and +:, ;

3 (#) are normalized measures, then,
by performing the sum over the #, ; variables, we get a factorized partition
function describing a system of independent : variables. So we substantially
have already reached our goal; we want now to manipulate a little bit these
factorized terms (the product over k1) in order to get a simpler expression
with a more transparent physical meaning.
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We use the notation A� k1
to denote the 3L_3L cube centered at the

block Ak1
:

A� k1
:=Q3L(2k1), k1 # LL (3.42)

Let Gk1
denote the annulus obtained from A� k1

by removing the block
Ak1

itself:

Gk1
:=A� k1

"Ak1
#Bk1

_ Bk1&e2
_ Ck1

_ Ck1&e1

_ Ck1&e1&e2
_ Ck1&e2

_ Dk1
_ Dk1&e1

(3.43)

We denote by ZGk1
((0), :k1

) the partition function on Gk1
with bound-

ary conditions :k1
on the ``hole'' Ak1

and 0 elsewhere. Moreover let
ZDk1&e1

_ Dk1
((0), :k1

, (;#)u, (;#)d ) denote the partition function on the (non-
connected) set Dk1&e1

_ Dk1
with boundary conditions :k1

on Ak1
, (;#)u on

the up part of Gk1
"(Dk1&e1

_ Dk1
) (namely in Ck1&e1

_ Bk1
_ Ck1

), (;#)d in
the down part Ck1&e1&e2

_ Bk1&e2
_ Ck1&e2

and 0 elsewhere. (see Fig. (7)).
Indeed we have the following factorization:

ZDk1&e1
_ Dk1

((0), :k1
, (;#)u, (;#)d )

=ZDk1&e1
((0), :k1

, (;#)u, (;#)d ) ZDk1
((0), :k1

, (;#)u, (;#)d ) (3.44)

We have:

ZGk1
((0, :k1

)= :
(;#)u, (;#)d

exp(H((;#)u)

+H((;#)d )) ZDk1&e1
_ Dk1

((0), :k1
, (;#)u, (;#)d ) (3.45)

We can write:

ZGk1
((0), :k1

)

= :
(;#)u, (;#)d

exp(H((;#)u)+H((;#)d ))

_\
ZDk1&e1

_ Dk1
((0), :k1

, (;#)u, (;#)d)
_ZDk1&e1

_ Dk1
((0), :k1

, (0)u, (0)d )

ZDk1&e1
_ Dk1

((0), :k1
, (;#)u, (0)d )

_ZDk1&e1
_ Dk1

((0), :k1
, (0)u, (;#)d )

&1+1+
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_
ZDk1&e1

_ Dk1
((0), :k1

, (;#)u, (0)d ) ZDk1&e1
_ Dk1

((0), :k1
, (0)u, (;#)d )

ZDk1&e1
_ Dk1

((0), :k1
, (0)u, (0)d )

=
ZF k2

(u)((0), (:k1
)u) ZF k2

(d )((0), (:k1
)d )

ZDk1&e1
_ Dk1

((0), :k1
, (0)u, (0)d )

(1+8 (1)
Ak1

(:k1
)) (3.46)

where

8(1)
Ak1

(:k1
) := :

(;#)u, (;#)d

+~ (:k1
)

k1
((;#)u, (;#)d )

_\
ZDk1&e1

_ Dk1
((0), :k1

, (;#)u, (;#)d )
_ZDk1&e1

_ Dk1
((0), :k1

, (0)u, (0)d )

ZDk1&e1
_ Dk1

((0), :k1
, (;#)u, (0)d )

_ZDk1&e1
_ Dk1

((0), :k1
, (0)u, (;#)d )

&1+ (3.47)

and

+~ (:k1
)

k1
((;#)u, (;#)d )

:=exp(H((;#)u)+H((;#)d ))

_
ZDk1&e1

_ Dk1
((0), :k1

, (;#)u, (0)d ) ZDk1&e1
_ Dk1

((0), :k1
, (0)u, (;#)d )

ZF k2
(u)((0), (:k1

)u) ZF k2
(d )((0), (:k1

)d )

(3.48)

We write:

9 (1)
Ak1

(:k1
) :=(1+8 (1)

Ak1
(:k1

))&1&1 (3.49)

From (3.46), (3.47), (3.48), (3.49) we get

ZF k2
(u)((0), (:k1

)u) ZF k2
(d )((0), (:k1

)d )

ZDk1&e1
_ Dk1

((0), :k1
, (0)u, (0)d )

=ZGk1
((0), :k1

)(1+9 (1)
Ak1

(:k1
)) (3.50)

We define the Bernoulli probability measure +1(:) as

+1(:) :=`
k1

+Ak1
(:k1

) (3.51)
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Fig. 7. The set Gk1
.

where

+Ak1
(:k1

) :=
1

ZA� k1
((0))

exp(HAk1
(:k1

)) ZGk1
((0), :k1

) (3.52)

in which by ZA� k1
((0)) we denote the partition function in A� k1

with 0 bound-
ary conditions.

In conclusion, from (3.41), (3.42), (3.50), (3.51) and (3.52) we get:

Z (l)
4p , n

�
=`

k1

ZA� k1
((0)) `

k2

[ZFk2
(0)]&1 `

k3

[ZC� k3
((0))]&1 `

k4

ZDk4
((0))

_:
:

+1(:) `
k1

(1+9 (1)
Ak1

(:k1
)) `

k2

(1+8 (1)
Bk2

(:)) `
k4

(1+9 (4)
Dk4

(:))

_:
;

+:
Bk2

(;k2
) `

k3

(1+8 (3)
Ck3

(:, ;)) :
#

+:, ;
3 (#) `

k4

(1+8 (4)
Dk4

(:, ;, #))

(3.53)

We write

Z(l)
4p , n

�
=Z� (l)

4p , n
�
5 (l)

4p , n
�

(3.54)

with

Z� (l)
4p , n

�
:=`

k1

ZA� k1
((0)) `

k2

[ZFk2
(0)]&1 `

k3

[ZC� k3
((0))]&1 `

k4

ZDk4
((0)) (3.55)
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and

5 (l)
4p , n

�
=:

:

+1(:) `
k1

(1+9 (1)
Ak1

(:k1
)) `

k2

(1+8 (2)
Bk2

(:)) `
k4

(1+9 (4)
Dk4

(:))

_:
;

+:
Bk2

(;k2
) `

k3

(1+8 (3)
Ck3

(:, ;)) :
#

+:, ;
3 (#) `

k4

(1+8 (4)
Dk4

(:, ;, #))

(3.56)

We are now ready to express 5 (l)
4p , n

�
as the partition function of a gas

of polymers whose only interaction is a hard core exclusion.
We have to analyze the various interaction terms (the 8 's and 9 's)

appearing in (3.56). We see from (3.17) that the term 8 (4)
Dk4

(:, ;, #), involving
the :, ;, # variables in the annulus Q3L(2k4+e1)"Dk4

, corresponds to an
``eight body'' interaction among the A, B, C blocks adjacent to Dk4

; we see
from (3.25) that 8 (3)

Ck3
(:, ;) is a six body interaction involving the A and B

blocks adjacent to Ck3
; 8 (2)

Bk2
(:), 9 (4)

Dk4
(:) are two body terms involving the

pair of A blocks contiguous to Bk2
, Dk4

, respectively. Finally 9 (1)
Ak1

(:k1
) is

just a one body term.
Looking at (3.22), (3.23) we can say that 8 (4)

Dk4
(:, ;, #) extends its

action to all A and B blocks adjacent to the C blocks in Q3L(2k4+e1) (see
Fig. 8), becoming a ``twelve body'' interaction. Indeed we have to average
8(4)

Dk4
(:, ;, #) with respect to the product of the measures +:, ;

Ck3
(#k3

) which are
parametrically dependent on the :, ; variables adjacent to Ck3

. On the
other hand, looking at (3.33), it is easily seen that we do not have to
extend any more the region of influence of 8 (4)

Dk4
(:, ;, #) because of the

parametric dependence on : of +:
Bk2

(;k2
). Moreover, still looking at (3.33),

we easily see that also the term 8 (3)
Ck3

(:, ;) does not extend at all its

influence. Of course 8 (2)
;k2

(:), 9 (4)
Dk4

(:) 9 (1)
Ak1

(:k1
) do not extend, as well, their

action.
So it is natural to define different kind of (many body) bonds corre-

sponding to the above interaction terms. As a consequence of the above
discussion we have the following kind of bonds; the bond D (8)

k4
, to which

corresponds the weight 8 (4)
Dk4

(:, ;, #) which is given by the set of A, B and
C blocks contiguous to Dk4

united with the other A blocks adjacent from
the exterior of Q3L(2k4+e1) to the already considered B blocks. So a D (8)

k4
-

bond contains twelve blocks. We similarly define (now without any exten-
sion the bond C (8)

k3
with weight 8 (3)

Ck3
(;, :); the bond B(8)

k2
with weight

8(2)
Bk2

(:); the bond D (9 )
k4

with weight 9 (4)
Dk4

(:) and the bond A (9 )
k1

with weight

9 (1)
Ak1

(:k1
).
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Fig. 8. The extended block Q3L(2k4+e1).

Given a bond b of one of the above kinds we define its support b� as
the subset of L obtained as the union of the QL blocks making part of b.
For any bond b we denote by !b the corresponding weight. Notice that !b

will be, in general, a function of the :, ;, # variables associated to the
blocks in b� . For instance a bond b=D (8)

k4
can be seen as an element of

(LL)12 whereas b� is a subset of the original lattice L given by the union
of the twelve interacting blocks.

We say that two bonds b1 , b2 are connected if b� 1 & b� 2{<. A polymer
R is a set of bonds b1 ,..., bk which is connected in the sense that
\i, j : 1�i< j�k there exists a chain of connected bonds in R joining bi to
bj namely _bi1

,..., bih
, bim

# R, m=1,..., h, bi1
=bi , bih

=bj : b� im
& b� im+1

{<,
m=1,..., h&1.

The support R� of a polymer R=b1 ,..., bk is simply R� =�k
i=1 b� i . We

call R4p
the set of all possible polymers with support in 4p and R the set

of all possible polymers with arbitrary support in L. Two polymers R1 , R2

are said to be compatible if R� 1 & R� 2=<; otherwise they are called incom-
patible.
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Given a polymer R=b1 ,..., bk we define its activity `R as:

`R :=:
:

+1(:) :
;

+:
2(;) :

#

+:, ;
3 (#) `

k

i=1

!bi
(:, ;, #) (3.57)

Notice that, due to the Bernoulli character of the above probability
measures, we can, as well, write:

:
:R�

+1, R� (:R� ) :
;R�

+:R�
2, R� (;R� ) :

#R�

+:R� , ;R�
3, R� (#R� ) `

k

i=1

!bi
(:R� , ;R� , #R� ) (3.58)

where :R� , ;R� , #R� denote the :, ;, # variables in R� ;

+:R� , ;R�
3, R� (#)= `

k3 : Ck3
/R�

+:, ;
Ck3

(#k3
) (3.59)

and so on.
Going back to the specific structure of our multi-canonical model it is

immediately seen that the activity of a polymer R is a function of the renor-
malized variables ni (#number of particles fixing the constraint in the
block QL(i)) only for QL(i) # R� . To make explicit this dependence we write

`R=`R(nR� ) (3.60)

where nR� =[ni ]QL(i)/R� .
From (3.56), (3.58) we get the desired expression:

5 (l)
4p , n

�
=1+ :

k�1

:
R1 ,..., Rk : R� i/4p , R� i & R� j=<, i< j=1,..., n

`
k

i=1

`Ri
(nR� i

) (3.61)

Now we state a Proposition referring to a general class of polymer Systems.
Its proof, which is based on the standard methods of the theory of the
cluster expansion, can be found in [O] (see also [GMM], [KP], [D3],
[NOZ]).

Proposition 3.2. Consider a general polymer system (see [GrK],
[KP], [D]) where the only interaction is a hard core exclusion forbidding
overlap of the supports R� of the polymers R. Its partition function is:

54=1+ :
k�1

:
R1 ,..., Rk : R� i/4, R� i & R� j=<, i< j=1,..., n

`
k

i=1

`Ri
(3.62)
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Suppose that:

(i) _}>0 such that the number of different polymers R with m
bonds (we write |R|=m) and support R� containing a fixed point (say the
origin) is bounded by }m;

(ii) _=>0 such that |`R |<= |R|

Let

.T (R1 ,..., Rn)=
1
n!

:
g # G(R1 ,..., Rn)

(&1)*edges in g (3.63)

where G(R1 ,..., Rn) is the set of connected graphs with n vertices (1,..., n)
and edges i, j corresponding to pairs Ri , Rj such that R� i & R� j{< (we set
the sum equal to zero if G is empty and one if n=1). If

=<
1
}

x
1+x

e&x }x=(51�2&1�2)

(3.64)

then there exists a positive constant C(=) such that

:
R1 ,..., Rn : R� i/4

_Ri=R

|.T (R1 ,..., Rn)| `
n

i=1

|`Ri
|�C(=) \= exp {- 5&1

2 =+
|R|

(3.65)

54=exp { :
n�1

:
R1 ,..., Rn : R� i/4

.T (R1 ,..., Rn) `
n

i=1

`Ri= (3.66)

In our context, it is clear that we can find a constant } so that the
hypothesis (i) of Proposition 3.2 holds. It is also clear from (3.17), (3.25),
(3.31), (3.39), (3.47), (3.49) that there exists a universal constant C such
that hypothesis (ii) holds with ==C$(l) (recall that $(l) � 0 as l � �) so
that (3.64) holds for any l sufficiently large. In fact in the two-dimensional
case we use a weaker condition: we do not need, in the left hand side of
(3.5) to take the supremum over V # P (i)

L ( j), but only the analogous condi-
tion only for the squares QL and for the L_3L rectangles.

Then, using the results of Proposition 3.2, we can compute the renor-
malized potential and perform the thermodynamic limit. Suppose, instead
of considering periodic boundary conditions, we had a generic b.c. { out-
side our cube 4p . It is clear that we can apply the same procedure (block
decimation and cluster expansion) that we have used above in the case of
periodic boundary conditions and get very similar results. Let us briefly
sketch the differences.
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Recall that our square 4p has a side being an integer multiple of the
elementary square QL with side L=2l; then certainly we will have a
horizontal edge of �4p adjacent to a row (of thickness L) made by C and
B blocks (a CB row) and a horizontal edge adjacent to a DA row.
Similarly we will have a vertical edge adjacent to an AB column and one
adjacent to a CD column.

It is easy to convince ourselves that even with generic { b.c. we can
repeat the same sequence of splitting and gluing, following the same ``path''
joining the 4 sub-lattices of LL namely D � C � B � A. In the bulk,
namely where the sets D, C� , B� , A� do not touch the boundary, we get the
same results as in the case of periodic b.c. For the blocks close to �4p we
get the following modifications:

(i) The various sets C� , B� , A� of the bulk are substituted by their
``truncations in 4p '' namely by C� & 4p , B� & 4p , A� & 4p with the proper {
b.c. on their part touching �4p and 0, like in the bulk, otherwise.

(ii) The various probability measures +:, ;
Ck3

, +:
Bk2

are defined similarly
to what is done in the bulk with the difference that, in their definitions, the
terms corresponding to partition functions on regions lying totally (resp.
partially) outside 4p are absent (resp. truncated); moreover the configura-
tion on which they depend parametrically: :, ; in +:, ;

Ck3
; : in +:

Bk2
may con-

tain {; notice that +Ak1
stays unchanged.

(iii) Some of the bonds, close to �4p , are consequently modified and
their weights can depend on {. By an abuse of notation, we still denote
them by D (8)

k4
, C (8)

k3
, B (8)

k2
, D (9 )

k4
, A (9 )

k1
.

Indeed the splitting operation is very similar in the bulk and close to
the boundary; the true difference is the following. When we have some term
produced by a splitting that, following the ``bulk rule,'' we would like to
glue with some other term outside 4p or coming from 4p , simply we omit
the gluing and in this way we construct some new domains just consisting
of the parts of the corresponding bulk domains (C� , B� , A� ), lying inside 4p .

Let us describe an example. Suppose that the upper horizontal side of
�4p is adjacent from the exterior to a CB row (which, indeed, is the case
with our choice of the location of 4p). After integrating over $ variables
and splitting like in (3.16) we do not glue on the blocks Ck3

sitting on the
top row like in (3.19) but we make an analogous operation combining the
term ZDk3

(coming from the splitting on the Dk3
block in 4p) with the self-

interaction in Ck3
and its interaction with the exterior configuration {. In

other words we use a formula analogous to (3.19) but without the term
ZDk3+e2

which, now, is absent. In this way the set corresponding to C� k3
in
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the bulk, just consists, now, of Ck3
_ Dk3

. Accordingly we define +:, ;
Ck3

by
omitting the factor ZDk3+e2

(#k3
) in its definition. When we continue with the

splitting on the horizontal direction and the gluing, say, on Bk3+e1
we end

up with the construction of a set, playing the role of B� k3+e1
, obtained by

removing from B� k3+e1
the two D blocks exterior to 4p where the ``top'' b.c.

are given by { whereas the other b.c are still given by the reference con-
figuration 0 like in the bulk. Of course also the error terms (of 8 or 9
type) are, accordingly, modified.

In this way we can repeat the transformation of our system into a
polymer gas. We just have to introduce the obvious modifications in the
terms appearing in the expression of the partition function of the reference
system Z� (l)

4p , n
�

(see (3.55)) as well as in the bonds D (8)
k4

, C (8)
k3

, B (8)
k2

, D (9 )
k4

,
A(9 )

k1
close to the boundary and in the measures +:, ;

Ck3
, +:

Bk2
when Ck3

, Bk2

happen to be adjacent to the boundary �4p ; then accordingly, we modify
the definition of the polymers and of their activity, `{

R=`{
R(n

� R� ) (see (3.57))
which, now, will in general depend on the location of the polymer and on
the b.c. {. Anyway if dl(R� , I c

p)>d the activity `{
R of R is the same as in the

bulk and does not depend on {.

Proof of Theorem 3.1. Let us take the logarithm of (3.54). By using
(3.55), (3.61), and (3.66) we get the following expression for the renor-
malized Hamiltonian.

H (l, {)
Ip

(n
�
)

:=log[Z (l, {)
4p , n

�
]

=:
k1

log[ZA� k1
((0))]&:

k2

log[ZFk2
((0))]&:

k3

log[ZC� k3
((0))]

+:
k4

log[ZDk4
((0))]+ :

k�1

:
R1 ,..., Rk : R� i/4p

.T (R1 ,..., Rn) `
k

i=1

`{
Ri

(nR� i
)

(3.67)

We have

H (l, {)
Ip

(n
�
)=const+ :

X/Ip

8 (l, {), sr
X (mX)+ :

X/Ip

8 (l, {), lr
Ip , X (mX) (3.68)

where, with Ak1
# Ap , Bk2

# Bp , Ck3
# Cp , Dk4

# Dp and dl(X, I c
p)>d (see the

above discussion for dl(X, I c
p)�d ), we set
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8(l, {), sr
X (mX )

:={
log[+0

A� k1 , z(Mi=mi , Ql(i )/A� k1
)] if X : � i # X Ql(i )=A� k1

&log[+0
Fk2 , z(M i=m i , Ql(i )/Fk2

)] if X : � i # X Ql(i )=Fk2

&log[+0
C� k3 , z(M i=m i , Ql(i )/C� k3

)] if X : � i # X Ql(i )=C� k3

log[+0
Dk4 , z(Mi=mi , Ql(i )/Dk4

)] if X : � i # X Ql(i )=Dk4

0 otherwise

and

8 (l, {), lr
Ip , X (mX) := :

R1 ,..., Rk : �i R� i=X

.T (R1 ,..., Rn) `
k

i=1

`{
Ri

(nR� i
) (3.70)

By the above discussion on the dependence of the activity on the
boundary condition, for each X//Ll such that dl(X, I c

p)>d, 8 (l, {)
X is

independent of {. Therefore the limit in (3.6) exists and is actually reached
for a finite p. Finally the estimate (3.7) is a direct consequence of (3.70) and
Proposition 3.2. K

4. THE MULTICANONICAL MEASURE

Given a positive integer l and a volume 4//L of the form (2.10) we
want to study the multicanonical state which is obtained from the multi-
grandcanonical one by fixing the total number of particles in each cube
Ql(i), i # I. Let thus N

�
=[Ni , i # I ] be the random variables defined in

(2.12) and, given n
�
=[ni=0,..., |Ql |, i # I ], the multi-canonical state &{

4, n
�

is
given by

&{
4, n

�
( } ) :=+{

4, z
�
( } | N

�
=n

�
)

which, in the RG context, represents the constrained model. Note that &{
4, n

�is independent on z
�
.

4.1. Thermodynamic Relationships

We need to compare the multi-canonical and multi-grandcanonical
state. We start here by discussing some thermodynamic relationships,
between them. With respect to the usual treatment we work in finite
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volume and take advantage of the strong mixing condition to obtain
explicit bounds.

Let the volume 4 be of the form (2.10) for some I//Ll and +{
4, z

�
be

a multi-grandcanonical state satisfying Condition MUSM(A). Introduce
the map AI

% z
�
[ \

�
{(z

�
) # [0, 1]I defined by

\{
i (z

�
)=\{, (l)

i (z
�
) :=

1
|Ql |

+{
4, z

�
(Ni ), i # I (4.1)

Proposition 4.1. For each I//Ll and each closed C/A there is
a constant C>0 such that for any boundary condition {, any z

�
# CI and all

l multiple of l0

1
C

�
�

�zi
\{

i (z
�
)�C (4.2)

} �
�zj

\{
i (z�

) }�Cz i
1+|Q� r

l(i) & Q� r
l( j)|

|Ql |
e&d(Ql (i), Ql ( j))�C, i{ j (4.3)

|\{ x

i (z
�
)&\{

i (z
�
) |�C

zi

|Ql |
e&d(x, Ql (i))�C (4.4)

The proof of the lower bound in (4.2) is based on the following
Gaussian bound on the characteristic function (see [DS4, Section 2.3] and
[Y, Section 9]) which will be extensively used in the sequel. For t

�
# R |I |, we

use the notation (t
�
, N

�
) :=� i # I t i Ni .

Lemma 4.2. For each I//Ll there is a constant C>0 such that
for any l and t

�
# [&?, ?] |I |

|+{
4, z

�
(exp[i(t

�
, N

�
)])|�exp {&

1
C

1
2

|Ql | :
i # I

zi |t i |
2= (4.5)

Proof. Before starting we stress that the proof is based only on the
finite range and boundedness of the interaction and does not use Condition
MUSM(A).

Let 4$/4 be a subset of a sub-lattice of L with spacing parameter
larger than the range r of the interaction. This means that for any x, y # 4$
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we have d(x, y)>r but nonetheless |4$|�|4|�C for some constant
C=C(r)�1. If we set Q$l( j) :=4$ & Ql( j), we then have

|+{
4, z

�
(ei(t

�
, N

�
))|= } | +{

4, z
�
(d`) +`

4$, z
� \ `

|I |

j=1

`
xj # Ql ( j)

eitj 'xj+ }
�sup

` } +`
4$, z

� \ `
|I |

j=1

`
xj # Q $l ( j)

eitj 'xj+ }
= `

|I |

j=1

`
xj # Q $l ( j)

sup
`

|+`
4$, z

�
(eitj ('xj

))|

since +`
4$, z

�
is a product measure.

Let px(`) :=+`
4$, z

�
(nx=1). Since,the interaction is bounded we get, for

some constant C=C(&U&)>0 independent on x, z
�

and `, zj �C�px(`)�
Czj for x # Ql( j). A simple computation on Bernoulli variables shows now
that for |t|�?, xj # Ql( j)

|+`
4$, z

�
(eitj 'xj )|�exp {&

1
C

1
2

zj t2
j =

the bound (4.5) follows. K

Proof of Proposition 4.1. We first note that

�
�zj

\{
i (z

�
)=

1
zj |Ql |

+{
4, z

�
(Ni ; Nj )

Let

vi, j=v{, (l)
i, j (z

�
) :=+{

4, z
�
(Ni ; N j )

the lower bound in (4.2) follows by noticing that Lemma 4.2 implies the
quadratic form estimate

:
i, j # I

ti t j vi, j �
1
C

|Ql | :
i # I

zi t2
i (4.6)

To prove the upper bound in (4.2) and (4.3) we instead use Condition
MUSM(A) to get

|vi, j |� :
x # Ql (i)

:
y # Ql ( j)

|+{
4, z

�
('x , 'y)|

� :
x # Ql (i) & Ql ( j)

+{
4, z

�
('x , 'x)+Cz i z j :

x # Ql (i)
y # Ql ( j), y{x

e&d(x, y)�C
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and that for x # Ql(i), by the same argument as in Lemma 4.2,
+{

4, z
�
('x , 'y)�Cz i . The proof of (4.4) is analogous and we omit it. K

Let +z be the infinite volume Gibbs state associated to the (translation
invariant) interaction (z, U ) satisfying Condition MUSM(A). We intro-
duce the (one dimensional) map A % z [ \(z) # [0, 1] by \(z)=+z('x) and
denote by \ [ z(\) the inverse map which is analytical as a consequence
of the strong mixing assumption. Let finally B�[0, 1] be defined by
B :=\(A) where A is as given in Condition MUSM(A); we note
B=[0, 1] if A=[0, �).

Recall that the map z
�
[ \{, (l)(z

�
) has been defined in (4.1). We need an

inverse map \
�

[ z
�
{, (l)(\

�
) defined for all possible boundary condition {.

When B is a proper subset of [0, 1] we take l large enough and define it
on a subset of B. By using strong mixing and Proposition 4.1 it is easy to
deduce that for each closed C/A

lim
l � �

\{, (l)
i (z

�
)=\(zi ), uniformly for { # 0, z

�
# CI (4.7)

and that for each closed set D/B and any l large enough (depending
on D) we have

DI/,
{

\
�

{, (l)(AI )

Finally, by (4.6), the Jacobian of the map z
�
[ \

�
{, (l)(z) is not degenerate

uniformly in { and l. Let D/B be a closed set and l large enough; we can
therefore define the inverse map on the set DI, i.e., the map DI

% \
�

[
z
�
{(\

�
)=z

�
{, (l)(\

�
) such that

\
�

{(z
�
{(\

�
))=\

�
for any \

�
# DI, { # 0.

When B=[0, 1] we can instead define the inverse map for any l.
Indeed we have

lim
zi � 0

\{, (l)
i (z

�
)=0, lim

zi � +�
\{, (l)

i (z
�
)=1,

uniformly for { # 0, [zj # [0, �), j{i ]

which, together with (4.6), implies

\
�

{, (l)([0, �)I )=[0, 1]I

We prove below some estimates on the Jacobian of the map
\
�

[ z
�
{, (l)(\); in order to describe them we need some more notation. Let
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[|h , h=0,..., k] be a path on the rescaled lattice Ll such that
dl(|h&1 , |h)=1, h=1,..., k. We introduce q(|h&1 , |h) :=|Q� r

l(|h&1) &
Q� r

l(|h)|�|Ql |.

Proposition 4.3. For each k # Z+, I//Ll and each closed D�B

there is a constant C>0 such that for any { # 0, \
�

# DI, x # �r4 and all l

large enough

1
C

�
�

�\i
z{

i (\
�
)�C (4.8)

} �
�\ j

z{
i (\

�
) }�C\i { sup

1�k$�k
sup

|k$= j

|:
|0=i,

`
k$

h=1

q(|h&1 , |h)+
1

lk+1= , i{ j
(4.9)

Moreover

|z{ x

i (\
�
)&z{

i (\
�
) |

�
C\i

|Ql | \e&d(x, Ql (i))�C+ sup
j: x # �rQl ( j)

sup
1�k$�k

sup

|k$= j

|:
|0=i,

`
k$

h=1

q(|h&1 , |h)+
1

lk+1+
(4.10)

Proof. Let

Ji, j=J{, (l)
i, j (z

�
) :=

�
�z j

\{
i (z

�
)

be the Jacobian of the map z
�
[ \

�
{(z

�
). We split it in its diagonal and off-

diagonal part; J=D+A where

Di, j :=$i, j
�

�zi
\{

i (z
�
)

and note that from (4.2), (4.3) it follows D�1�C, &A&�Cl&1.
In order to prove the bounds (4.8), (4.9) we need to invert the

Jacobian J. We use the above splitting and Neumann series to get

J&1=D&1(1+AD&1)&1=D&1 \ :
k

h=0

(&1)h (AD&1)h+Rk+1+
where &Rk+1&�Cl&(k+1). Since D is bounded from below and Ai, j is
exponentially small for dl(i, j)>1, (4.9) follows easily from (4.3).
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To prove (4.10) we note that, by definition of the map \
�

[ z
�
{(\

�
) we

have

\{ x

i (z
�
{ x

(\
�
))=\{

i (z
�
{(\

�
)), i # I (4.11)

By using the invertibility (uniform in { # 0 and l) of z
�
[ \

�
{, (l)(z

�
) and (4.7),

it is not difficult to see that (4.11) implies that, for l large enough, z
�
{ x

(\
�
)

and z
�
{(\

�
) are in the same connected component of z

�
{ x

(DI ) _ z
�
{(DI ).

On the other hand, by Lagrange's theorem

\`
i (z

�
2)&\`

i (z�
1)= :

j # I

�
�zj

\`
i (z

�
� ) } [z2

j &z1
j ]

where z
�
� # AI if z

�
1, z

�
2 are the same connected component of AI. Whence,

by using (4.11),

z{x

i (\
�
)&z{

i (\
�
)= :

j # I

(J{(z
�
� ))&1

ij } [\{
j (z�

{(\
�
))&\{x

j (z
�
{(\))]

and (4.10) follows from (4.4) and (4.9). K

4.2. Comparison of Ensembles in Finite Volumes

We here discuss the equivalence of multi-grandcanonical and multi-
canonical ensembles. We shall work in finite volume with the aim of
obtaining explicit bounds as a consequence of the strong mixing assumption.

Let I//Ll , and 4 as in (2.10). we want to compare the measures
+{

4, z
�

and &{
4, n

�
where the activity z

�
is chosen, depending on n

�
, 4 and {, as

(recall that the function \
�

[ z
�
{(\

�
) as been defined above) z

�
=z

�
{(n

�
�|Ql | ),

i.e., so that +{
4, z

�
(N

�
)=n

�
. We have the following result. Recall that

B=\(A).

Theorem 4.4. Assume +{
4, z

�
satisfies Condition MUSM(A). Then

for each closed D�B, each I//Ll and each local function f, there is a
constant C depending on the constants in Condition MUSM(A), D, |I |,
diam(S( f )), & f &, such that for any b.c. {, any n

�
# DI and all l multiple of

l0 the following bound holds

|&{
4, n

�
f &+{

4, z
�

f |�C
1

|Ql |
(4.12)

The proof of this theorem is based on the DS complete analyticity
conditions [DS1], [DS2], [DS3]. Although originally formulated for
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arbitrary volumes their theory carries over to our strong mixing for regular
domains as already remarked.

More precisely we need the following condition [DS3, Condition Ib]
which is equivalent to SM(l0). There is a constant =>0 such that for all
complex interactions 8� in an =-neighborhood of 8, i.e.

8� # O=(8) :=[&8� &8&0<=]

and all finite volumes 4 as in (2.2) the analytic functions Z{
4(8� ) are non-

vanishing. Moreover, there is another constant A$<� such that for all
8� 1 , 8� 2 # O=(8) we have the bound

sup
{ # 0

|P{
4(8� 1)&P{

4(8� 2)|<A$ |4� r & supp(8� 1&8� 2)| (4.13)

where the pressure P is defined by

P{
4(8� ) :=log Z{

4(8� ) (4.14)

and supp(8) :=�2: 82{0 2.

Proof of Theorem 4.4. Since the b.c. { is kept fixed we drop it from
the notation. We also assume, without loss of generality, that & f & is small
enough.

Step 1. We express here the difference between multi-grandcanoni-
cal and multi-canonical states by introducing the Fourier transform of the
indicator 1N

�
=n

�
.

By definition of the multi-canonical state &4, n
�
, we have

&4, n
�
( f )&+4, z

�
( f )=

+4, z
�
(( f &+4, z

�
( f )) 1N

�
=n

�
)

+4, z
�
(N

�
=n

�
)

=
+4, z

�
((1+u) 1N

�
=n

�
)

+4, z
�
(N

�
=n

�
)

&1 (4.15)

where we introduced u := f &+4, z
�
( f ) which has the same support as f and

is mean zero w.r.t. +4, z
�
.

We next introduce the perturbed probability measure d+u
4, z

�
:=

(1+u) d+4, z
�
. We regard it as the Gibbs measure w.r.t. an interaction 8u.

Since f is a local function, we have that 8u has range bounded by max[r,
diam(supp( f ))]. Moreover, by taking & f & small (depending on =) we have
that 8u # O=(8).
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By taking the Fourier transform on the r.h.s. of (4.15), we have (recall
that +4, z

�
(N

�
)=n

�
by the choice of z

�
)

&4, z
�
( f )&+4, z

�
( f )=

� |t
�
| �? dt

�
e&i(t

�
, +4, z

�
N
�

) +u
4, z

�
(ei(t

�
, N

�
))

� |t
�
|�? dt

�
e&i(t

�
, +4, z

�
N
�

) +4, z
�
(ei(t

�
, N

�
))

&1

=
� |t

�
|�? dt

�
e�4( t

�
, z

�
)&i(t

�
, +4, z

�
N
�

)[e� u
4( t

�
, z

�
)&�4( t

�
, z

�
)&1]

� |t
�
|�? dt

�
e�4( t

�
, z

�
)&i(t

�
, +4, z

�
N
�

) (4.16)

where, indicating with a superscript the dependence on the perturbation u
and inside the parentheses the dependence on the complex activity, we
introduced

�4( t
�
, z

�
) :=log +4, z

�
(ei(t

�
, N

�
))=P4([zj eitj ] j # I )&P4(z

�
) (4.17)

where the second identity holds by expressing the l.h.s. in terms of ratios
of partition functions. The definition of �+

4( t
�
, z

�
) is analogous, it is enough

to consider the pressure of the perturbed interaction.

Step 2. Here we estimate from below the denominator on the r.h.s.
of (4.16).

Let us introduce the variances

v2
i =v{, (l)

i (z
�
)2 :=+{

4, z
�
(Ni ; N i )

and note that from Proposition 4.1 we have C&1zi |Ql |�v2
i �Cz i |Ql |.

This bound will be used extensively in the sequel.
We shall prove the following bound. There is a constant C indepen-

dent on {, l and z
�

such that for l large enough

+4, z
�
(N

�
=n

�
)=

1
(2?) |I | |

|t
�
|�?

dt
�
e�4( t

�
, z

�
)&i(t

�
, +4, z

�
N
�

)�
1
C

1
>i # I vi

(4.18)

where we recall z
�

has been chosen so that \
�

4, z
�
(N

�
)=n

�
.

By a change of variables we get

+4, z
�
(N

�
=n

�
)=

1
>j # I 2?vj

|
|sj |�?vj

ds
�
e�4(s

�
�v, z

�
)&i(s

�
�v, +4, z

�
N
�

)

where we used the notation s
�
�v to denote the variables [sj �vj , j # I ].
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Let K be a large constant. We take advantage of the Gaussian bound
in Lemma 4.2 to get

} |_j: K 7 (?vj)�|sj |�?vj

ds
�
e�4(s

�
�v, z

�
)&i(s

�
�v, +4, z

�
N
�

) }
�|

_j: |sj |�K 7 (?vj)
ds

�
exp {&

1
2

1
C

|Ql | :
i # I

zi
s2

i

v2
i =�Ce&K 2�C (4.19)

By the above bound we can restrict ourselves to bounded s
�
. We need

however to treat separately the Gaussian scaling in which vi diverges with
l and the very low density case in which it remains bounded. Let M be
another large constant (1<<K<<M<<l) and introduce Ig :=[i # I :
v2

i �M ], Ip :=I "Ig . Let also s
� g :=[s i , i # Ig] (resp. s

� p :=[s i , i # Ip]); we
use an analogous notation for z

�
. We shall prove the following expansion on

the logarithm of the characteristic function.

�4(s
�
�v, z

�
)&i(s

�
�v, +4, z

�
N
�

)

= :
j # Ip

(eisj �vj&1&isj �vj ) +4, z
�
Nj&

1
2

:
j j $ # Ig

+4, z
�
(Nj ; Nj $)

sj

v j

s j $

vj $
+R4(s

�
, z

�
)

(4.20)

where

sup
|s
�
| �K

|R4(s
�
, z

�
) |�C \ K3

- M
+

M 2

|Ql |
+

KM

- |Ql |
+

K2M
|Ql | +

Note that on the r.h.s. of (4.20) the first term corresponds to a Poisson
limit for Nj , j # Ip and to a ( joint) Gaussian limit for Nj , j # Ig .

Postponing the proof of (4.20), let us first show that, together with
(4.19), it implies the bound (4.18). It is enough to notice that if Z is a
Poisson r.v. with mean * # Z+ we have

1
2? |

|s|�?u
ds e (e is�u&1&is�u) *=u Prob(Z=*)=u

e&***

*!

By using the bounds v2
i �zi |Ql |�C, +4, z

�
Ni�Cz i |Ql | , Stirling's formula

and estimating the Gaussian integral (recall (4.6)) we thus get

|
|si |�K 7 (?vi )

ds
�
exp { :

j # Ip

(eisj �vj&1&isj �vj ) +4, z
�
(Nj )

&
1
2

:
j j $ # Ig

+4, z
�
(Nj ; Nj $)

sj

vj

sj $

v j $ =�
1
C
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and (4.18) follows since we can make the remainder as small as we want.
In order to prove (4.20) let us first expand �4 in power series of s

� g
and

get

�4(s
�
�v, z

�
)=�4(0, s

� p�v, z
�
)+ :

i # Ig

�
�t i

�4(0, s
� p �v, z

�
)

si

vi

+
1
2

:
i, i $ # Ig

�2

�t i �ti $
�4(0, s

� p �v, z
�
)

si

vi

si $

vi $

+R1
4(s

�
, z

�
) (4.21)

We note that by Condition [DS3, Ic], still equivalent to SM(l0),

} �
�t i

�( t
�
, z

�
) }=| +{

4, z
�
, t

�
(Ni )|�Czi |Ql | (4.22)

here +{
4, z

�
, t

�
denotes the complex measure defined by

+{
4, z

�
, t

�
( f ) :=

+{
4, z

�
(ei(t

�
, N

�
) f )

+{
4, z

�
(ei(t

�
, N

�
))

We remark that the expression in [DS3,Ic] does not include zi on the r.h.s.
of (4.22). However, by the remark following Condition USM(l0), we can
easily verify that (4.22) holds.

Recall that the pressure P4(z
�
) is holomorphic in an =-neighborhood of z

�
.

Therefore (see (4.17)) �4( t
�
, z

�
) is holomorphic in a neighborhood of t

�
=0.

By taking K�- M small enough we can thus use Cauchy integral formula
and bound the third order derivatives (w.r.t. to t

�
) of �( t

�
, z

�
) in terms of the

first one. By applying (4.22) we get

sup
|s
�
|�K

|R1
4(s

�
, z

�
) |�C sup

|s
�
|�K

:
i, j, k # Ig

min[z i , z j , zk] |Ql |
|sisjsk |
viv jvk

�CK3 1

- M

We next expand the other terms on the r.h.s. of (4.21) in power series
of z

� p . Note in fact that for i # Ip we have zi�CM�|Ql |. Let us consider the
first one. We get

�4(0, s
� p

�v, z
�
)=�4(0, s

� p �v, z
� g , 0)+ :

j # Ip

zj
�

�zj
�4(0, s

� p �v, z
� g , 0)+R2

4(s
�
, z

�
)
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Noticing that |�4( t
�
, z

�
) |�C |Ql | and using again the Cauchy integral for-

mula, we can bound the remainder as follows

|R2
4(s

�
, z

�
) |�C :

j, j $ # Ip

zjzj $ |Ql |�C
M2

|Ql |

We next observe that �4(0, s
� p

�v, z
� g , 0)=0. On the other hand, by (4.17)

�
�zj

�4(0, s
� p

�v, z
� g , 0)=(eisj �vj&1)

�
�zj

P4(z
� g , 0)

By analyticity of the pressure (see (4.22)) we also have

} �
�z j

P4(z
� g , 0)&

�
�zj

P4(z
� g , z

� p) }�C |Ql | :
i # Ip

zi�CM

Since zj (���zj ) P4(z
�
)=+4, z

�
(Nj ), we thus get

�4(0, s
� p

�v, z
�
)= :

j # Ip

(eisj �vj&1) +4, z
�
(Nj )+R3

4(s
�
, z

�
), |R3

4(s
�
, z

�
) |�C

M2

|Ql |

We expand similarly the other two terms in (4.21). For the second one
we have

�
�ti

�4(0, s
� p�v, z

�
)=

�
�t i

�4(0, s
� p �v, z

� g , 0)+R4
4, i (s�

, z
�
)

where, by using again (4.22) and the analyticity of �4( t
�
, z

�
), we have

|R4
4, i (s�

, z
�
)|�Czi |Ql | :

j # Ip

zj�CMzi

Furthermore, since by setting zi=0, �4 becomes independent of si ,

} �
�tj

�4(0, s
� p �v, z

� g , 0)&
�

�tj
�4(0, 0, z

� g , z
� p) }

= } �
�tj

�4(0, s
� p �v, z

� g , 0)&i+4, z
�
(Nj ) }�CMzj
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so that

:
j # Ig

�
�tj

�4(0, s
� p

�v, z
�
)

sj

vj
=i :

j # Ig

sj

vj
+4, z

�
(Nj )+R5

4(s
�
, z

�
),

sup
|s
�
|�K

|R5
4(s

�
, z

�
) |�C

KM

- |Ql |

By the same argument we finally have

�2

�t i �t i $
�4(0, s

� p �v, z
� g , z

� p)=
�2

�ti �t i $
�4(0, s

� p �v, z
� g , 0)+R6

4, i, i $ (s
�
, z

�
),

(4.23)
|R6

4, i, i $(s�
, z

�
) |�CMzi 7z i $

Moreover, as before,

} �2

�ti �t i $
�4(0, s

� p �v, z
� g , 0)&

�2

�t i �ti $

�4(0, 0, z
� g , z

� p) }
= } �2

�ti �t i $
�4(0, s

� p �v, z
� g , 0)++4, z

�
(Ni ; N i $) }�CMzi 7zi $

which gives us

:
i, i $ # Ig

�2

�t i �ti $
�4(0, s

� p �v, z
�
)

si

vi

si $

vi $
=&

1
2

:
i, i $ # Ig

+4, z
�
(Ni ; Ni $)

si

vi

si $

vi $

+R7
4(s

�
, z

�
)

where

sup
|s
�
|�K

|R7
4(s

�
, z

�
) |�C

K2M

- |Ql |

The proof of (4.20) is now complete.

Step 3. We finally here estimate from above the numerator on the
r.h.s. of (4.16).

Let Kl :=log |Ql |. We make the change of variables t
�
=s

�
�v and use

Lemma 4.2 (which holds also for the perturbed measure +u
4, z

�
) to get

} |_j: Kl 7 (?vj)�|sj |�?vj

ds
�
e�4(s

�
�v, z

�
)&i(s

�
�v, +4, z

�
N
�

)[e� u
4(s

�
�v, z

�
)&�4(s

�
�v, z

�
)&1] }

�|
_j: Kl 7 (?vj)�|sj |�?vj

ds
�
[ |e�4(s

�
�v, z

�
)|+|e�u

4(s
�
�v, z

�
)|]�Ce&K 2

l �C�C
1

|Ql |

We can thus consider the case |sj |�Kl 7 (?vj ).
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Since zi |Ql |�C�v2
i �Czi |Ql |, either si �v i or zi is small. We can there-

fore apply the bound (4.13). We get

|Pu
4([eisj �vj zj ])&P4([eisj �vj zj ])|�C

We nest expand the difference �u
4(s

�
�v, z

�
)&�4(s

�
�v, z

�
) in power series

of s
�
. Since +u

4, z
�
(Nk)&+4, z

�
(Nk)=+4, z

�
( f ; Nk), we get

�u
4(s

�
�v, z

�
)&�4(s

�
�v, z

�
)=i :

i # I

+4, z
�
( f ; Nk)

sk

vk
+R1

4(s
�
, z

�
)

where

R1
4(s

�
, z

�
)=

1
2

:
i, j # I

�2

�ti �t j
[�u

4( t
�
, z

�
)&�4( t

�
, z

�
)]| t

�
=s�

�
�v

sisj

vivj

We note that, by (4.17),

�
�tk

[�u
4( t

�
, z

�
)&�4( t

�
, z

�
)]=izke itk

�
�z$j

[Pu
4(z

�
$)&P4(z

�
$)]| z$j=zj e

itj

By analyticity of Pu
4(z

�
$)&P4(z

�
$), for t

�
=s

�
�v we can bound the r.h.s. above

by Czk . We thus have

|R1
4(s

�
, z

�
) |�C :

i, j # I

zi 7zj
sisj

vivj
�C

|s
�
| 2

|Ql |

As |+4, z
�
( f ; N j )|�Czj , for |s

�
|�Kl we finally have

exp[�u
4(s

�
�v, z

�
)&�4(s

�
�v, z

�
)]&1=i :

k # I

+4, z
�
( f ; Nk)

sk

vk
+R2

4(s
�
, z

�
),

(4.24)

|R2
4(s

�
, z

�
) |�C

|s
�
|2

|Ql |

By Lemma 4.2, we have

} ||sj |�Kl 7 (?vj )
ds

�
e�4(s

�
�v, z

�
)&i(s

�
�v, +4, z

�
(N

�
))R2

4(s
�
, z

�
) }�C

1
|Ql |

To conclude the proof we consider separately each of the other terms
on the r.h.s of (4.24). We want to show that, with a small error, the
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function �(s
�
�v, z

�
)&i(s

�
�v, +4, z

�
(N

�
)) is even in sk ; hence the integral

vanishes by symmetry. We thus expand �(s
�
�v, z

�
) as follows

�(s
�
�v, z

�
)&i(s

�
�v, +4, z

�
(N

�
)) =

1
2

:
j, j $

�2

�tj �t j $
�(s

�
� �v, z

�
)

sjsj $

v jvj $

by letting s
�
(k) :=[s i , i # I"[k]], we have

�2

�tj �tj $

�(s
�
� �v, z

�
)=&Bj, j $(s�

� (k))+R3
4, j, j $(s

�
, z

�
),

Bj, j $(s
�
� (k)) :=&

�2

�t j �tj $

�(0, s
�
� (k)�v, z

�
)

and, by (4.22) and the analyticity of �4 ,

|R3
4, j, j $(s

�
, z

�
) |�Cz j 7 zj $ |Ql |

sk

vk

Whence

�(s
�
�v, z

�
)&i(s

�
�v, +4, z

�
(N

�
))=&

1
2

:
j, j $ # I

Bj, j $(s�
� (k))

sjsj $

v j vj $
+R4

4, k(s
�
, z

�
),

(4.25)

|R4
4, k(s

�
, z

�
) |�C

|s|3

vk

We nest use the bound

|eR 4
4, k(s

�
, z

�
)&1|�(1+|eR4

4, k(s
�
, z

�
)| ) |R4

4, k(s
�
, z

�
) |

and (4.25) to get

} | |sj |�Kl 7 (?vj )
ds

�
e�4(s

�
�v, z

�
)&i(s

�
�v, +4, z

�
(N

�
)) +4, z

�
( f ; Nk)

sk

vk }
�|

|sj |�Kl 7 (?vj )
ds

� \ |e&(1�2) �j, j $ # I Bj, j $(s
�
� (k))(sj sj $ �vj vj $ )|+|e�4(s

�
�v, z

�
)|+ |R5

4, k(s
�
, z

�
) |

(4.26)

where, recalling that |+4, z
�
( f ; Nk)|�Czk and v2

k�zk |Ql |�C,

R5
4, k(s

�
, z

�
) :=+4, z

�
( f ; Nk)

sk

vk
R4

4, k(s
�
, z

�
), |R5

4, k(s
�
, z

�
) |�C

|s
�
|4

|Ql |
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By applying again Lemma 4.2 we have

|
|sj |�Kl 7 (?vj )

ds
�

|e�4(s
�
�v, z

�
)| |R5

4, k(s
�
, z

�
) |�C

1
|Ql |

It now remains only to estimate the other term on the r.h.s. of (4.26).
Let Ml :=l1�4 and introduce I (k)

g :=[i # I"[k] : v2
i �Ml], I (k)

p :=I"([k] _
I (k)

g ). We have

Bj, j $(s�
� (k))=&

�2

�tj �tj $
�(0, s

�
� (k)

p �v, z
�
)+R6

4, k, j, j $(s�
, z

�
)

where

sup
|s
�
|�Kl

|R6
4, k, j, j $(s

�
, z

�
) |�Cz j 7zj $ |Ql | :

i # I (k)
g

|si |
v i

�Cz j 7 zj $

Kl

- Ml

so that, by using also (4.23),

:
j, j $ # I

Bj, j $(s�
� (k))

sjsj $

vj vj $

= :
j, j $ # I

+4, z
�
(Nj , Nj $)

sj sj $

vj vj $
+R7

4, k(s
�
, z

�
)

where

sup
|s
�
| �Kl

|R7
4, k(s

�
, z

�
) |�C \ K 3

l

- Ml

+
K 2

lMl

|Ql | +
Hence, recalling (4.6),

|
|sj |�Kl 7 (?vj )

ds
�

|e&(1�2) �j, j $ # I Bj, j $(s�
� (k))(sj sj $ �vj vj $ )| |R5

4, k(s
�
, z

�
) |�C

1
|Ql |

which concludes the proof. K

4.3. Local Central Limit Theorem with Multiplicative Error

In order to obtain the convergence of the short range part of the
renormalized potential to the one of independent harmonic Oscillators we
need a local central limit theorem which will allow us to compute the
asymptotic behavior (as l � �) of the r.h.s. of (3.69). Since we are inter-
ested in the logarithm of the partition function we do need a local CLT in
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which the error appears in a multiplicative way. It can be proven by apply-
ing the theory of moderate deviations as developed in [DS4]; although
these results are stated only for very high temperature, the proof is based
only on the analyticity properties of the thermodynamic functions which
hold under Condition MUSM(A).

Let us recall that +{
4, z

�
is the multi-grandcanonical state in a volume

4//L of the form (2.10). We denote by v(l)=v{, (l)(z
�
) the covariance

matrix of the total number of particles in each cube Ql(i), i.e. v{, (l)(z
�
) i, j :=

+{
4, z

�
(Ni ; Nj ), where N i has been defined in (2.12). We have the following

local central limit theorem.

Theorem 4.5. Let U satisfy MUSM(A) and \
�

(l)=\
�

{, (l)(z
�
) :=

+{
4, z

�
(N

�
)�|Ql |. For each 4 of the form (2.10) and z

�
# A, =>0 there are con-

stants $=$(z
�
, I, =)>0, C=C(z

�
, I, =)<� such that for any integer l we

have

+{
4, z

�
(N

�
=n

�
)=[(2?) |I | det v(l)]&1�2

_exp[& 1
2( (n

�
&\

�
(l) |Ql | ), (v(l))&1 (n

�
&\

�
(l) |Ql | ))]

_[1+R{
4(n

�
)] (4.27)

where

sup
{ # 0

sup
n
�
: |n

�
&\

�
(l) |Ql | |�|Ql |2�3&=

|R{
4(n

�
) |�C

1
|Ql |$ (4.28)

This Theorem is essentially contained in [DS4]; however to make the
paper selfcontained we give below a brief sketch of the proof. Given n

�
we

let `
�
=`

�
{, (l)(n

�
) be defined by `

�
:=z

�
{, (l)(n

�
�|Ql | ) where we recall the function

\
�

[ z
�
{, (l)(\

�
) has been defined in Section 4.1. We also recall the pressure

has been defined in (4.14). We have the following lemma.

Lemma 4.6. Under the same hypotheses of the previous theorem,
there are constants =0==0(z

�
, I )>0, C=C(z

�
, I, =0)<� such that

+{
4, z

�
(N

�
=n

�
)=[(2?) |I | det v(l)(`

�
)]&1�2 exp[&I4(n

�
)](1+R� {

4(n
�
)) (4.29)

where

I4(n
�
)=I {

4, z
�
(n

�
) := :

i # I

ni log
`i

z i
&[P{

4(`
�
)&P{

4(z
�
)]
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and

sup
{ # 0

sup
n
�
: |n

�
&\

�
(l) |Ql | |�=0 |Ql |

|R� {
4(n

�
) |�C

1
|Ql |

(4.30)

Sketch of the proof. By definition of the multi-grandcanonical state
+{

4, z
�

we have

+{
4, z

�
(N

�
=n

�
)=`

i # I \
zi

`i +
ni

}
Z{(`

�
)

Z{(z
�
)

} +{
4, `

�

(N
�

=n
�
)

=e&I4(n
�
) 1
(2?) |I | |

|t
�
|�?

dt
�
e&i(t

�
, n

�
)+{

4, `
�

(ei(t
�
, N

�
))

If we take = small enough, |n
�
&\

�
(l) |Ql | |�= |Ql | implies that (`

�
, U ) satisfies

SM(l0) for some l0=l0(z
�
, =0). In order to conclude the proof it is then

enough to make the change of variables t i=si �- v (l)
i, i , use Lemma 4.2 to

estimate the tail and expand log +{
4, `

�

(ei(t
�
, N

�
)) up to the third order, using

analyticity to estimate the remainder (see Section 4.2 for analogous com-
putations). Note in fact that, by the definition of `

�
we have +{

4, `
�

(N
�

)=n
�
. K

Sketch of the Proof of Theorem 4.5. By applying Proposition 4.1
we have

sup
{ # 0

sup
n
�
: |n

�
&\

�
(l) |Ql | |�|Ql |2�3&=

&v(l)(z
�
)&v (l)(`

�
)&�C |Ql |2�3&=

which, together with the bound (4.6), implies

(det v(l)(`
�
))&1�2=(det v(l)(z

�
))&1�2 (1+R{, (1)

4 (n
�
))

where

sup
{ # 0

sup
n
�
: |n

�
&\

�
(l) |Ql | |�|Ql |2�3&=

|R{, (1)
4 (n

�
) |�C

1
|Ql |1�3

On the other hand, by the analyticity (uniform in l) of the thermo-
dynamic functions, we have (see [DS4, Eq. 1.2.15])

I4(n
�
)= 1

2 ( (n
�
&\

�
(l) |Ql | ), (v (l)(z

�
))&1 (n

�
&\

�
(l) |Ql | ))(1+R{, (2)

4 (n
�
))
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where

sup
{ # 0

sup
n
�
: |n

�
&\

�
(l) |Ql | |�|Ql |2�3&=

|R{, (2)
4 (n

�
) |�C

1
|Ql |3=

in which we have used again that +{
4, `

�

(N
�

)=n
�
. K

5. GIBBSIANNESS AND CONVERGENCE

In this section we conclude the proof of the main results. First, by
applying the comparison of ensembles, we show the constrained models
satisfy a finite size effective condition uniformly in the constraints.
Secondly, by applying the local central limit theorem, we prove the short
range part of the renormalized potential converges to the potential of inde-
pendent harmonic oscillators. Finally, when the global condition GMUSM
holds, we verify that the renormalized measure + (l)

z (defined directly in
infinite volume) is Gibbs w.r.t. the potential constructed in Section 3
(obtained via a thermodynamic limit).

5.1. Finite-Size Condition for the Constrained Models

We consider the BAT obtained by partitioning the original lattice L

into cubes of side l, L=� i # Ll
Ql(i). Let +z be the (infinite volume) Gibbs

state of the original system at activity z. We then introduce the constrained
system by fixing the total number of particles in each cube; it is described
by the conditional (multi-canonical) measure we introduced in the previous
section.

We want to show that, provided Condition MUSM(A) is satisfied,
the local specification associated to the multi-canonical state &{

4, n
�

satisfies
(3.5) with $(l)=C�l. We shall consider l to be an integer multiple
of l0 . Recall that B=\(A), L=dl and D (l)

4� =(|Ql | D)4� & 0 (l)
4� (see

Theorem 3.1).

Proposition 5.1. Assume the interaction U satisfies MUSM(A).
Then for each closed set D�B there is a constant C such that for all L the
following bound holds.

sup
i # Ll

sup
k=1,..., d

sup
4 # P L

(k)(i)

sup
n
�

# D
4�
(l)

sup
_, `, {

}
Z4, n

�
(_(k, +), _ (k, &), {) Z4, n

�
(`(k, +), `(k, &), {)

Z4, n
�
(_(k, +), `(k, &), {) Z4, n

�
(`(k, +), _(k, &), {)

&1}�C
l

(5.1)
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Lemma 5.2. In the same setting and notation of the above
theorem, there is a constant C such that for any 2/4 for which
d(2, �(k, &)4)�r, diam(2)�r

sup
i # Ll

sup
k=1,..., d

sup
4 # P L

(k)(i)

sup
n
�

# D
4�
(l)

sup
_, `, {

Var(&_ (k, +), {, {
4, n

�
; 2 , &` (k, +), {, {

4, n
�
; 2 )�C

1
|Ql |

(5.2)

Postponing the proof of the lemma, we show how it implies the main
estimate.

Proof of Proposition 5.1. Let us first show that (5.2) implies the
following condition

sup
i # Ll

sup
k=1,..., d

sup
4 # PL

(k)(i)

sup
x # �(k, &)4

sup
n
�

# D
4�
(l)

sup
_, `, {

}
Z4, n

�
(_ (k, +), {x, {) Z4, n

�
(`(k, +), {, {)

Z4, n
�
(`(k, +), {x, {) Z4, n

�
(_ (k, +), {, {)

&1}�C
1

|Ql |
(5.3)

We have in fact

Z4, n
�
(_(k, +), {x, {) Z4, n

�
(`(k, +), {, {)

Z4, n
�
(`(k, +), {x, {) Z4, n

�
(_(k, +), {, {)

&1

=
Z4, n

�
(_(k, +), {x, {)

Z4, n
�
(_(k, +), {, {) _

Z4, n
�
(`(k, +), {, {)

Z4, n
�
(`(k, +), {x, {)

&
Z4, n

�
(_(k, +), {, {)

Z4, n
�
(_(k, +), {x, {)&

=
Z4, n

�
(_(k, +), {x, {)

Z4, n
�
(_(k, +), {, {)

[&` (k, +), {x, {
4, n

�
(h{

x)&&_ (k, +), { x, {
4, n

�
(h{

x)] (5.4)

where

h{
x(') :=e&[H4(' b4 { x)&H4(' b4 {)]

is a local function with support contained in an { neighborhood of x. Since
the first factor on the r.h.s. of (5.4) is bounded uniformly and the same
holds for &h{

x&, (5.3) follows from (5.2).
An easy telescopic argument shows (5.3) implies (5.1). Indeed, for any

two configurations `(k, &), _(k, &), differing only on �(k, &)4, we can find a
path ['l]l=0,..., M of length M�r } (3L)d&1 such that '0=_(k, &), 'M=`(k, &)
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and 'l differs from 'l&1 at most in one single site x # �(k, &)4. We then
write

Z4, n
�
(_(k, +), _(k, &), {) Z4, n

�
(`(k, +), ` (k, &), {)

Z4, n
�
(_ (k, +), `(k, &), {) Z4, n

�
(`(k, +), _(k, &), {)

= `
M

l=1

Z4, n
�
(_ (k, +), 'l&1 , {) Z4, n

�
(`(k, +), 'l , {)

Z4, n
�
(_ (k, +), 'l , {) Z4, n

�
(`(k, +), ' l&1 , {)

and use (5.3) to get (5.1). K

Proof of Lemma 5.2. Let us recall that Var(+, &)=sup& f &=1 |+f&&f |.
Let f be a local function with support contained in 2. By Theorem 4.4 we
have

|&`1
4, n

�
f&&`2

4, n
�

f |�C
1

|Ql |
+|+`1

4, z
�

1 f&+`2
4, z

�
2 f |

where z
�
:=z

�
(4, n

�
, `:), :=1, 2 is chosen so that +`:

4, z
�

:(N
�

)=n
�
. Since `1

differs from `2 only on �(k, +)4, by Condition MUSM(A) we now have

|+`1
4, z

�
1 f&+`2

4, z
�

1 f |�Ce&d(2, �(k, +)4)�C

On the other hand, by Lagrange theorem, for a suitable z
�
� ,

|+`2
4, z

�
1 f&+`2

4, z
�

2 f |� :
i # 4�

1
z� i

|+`2
4, z

�
� ( f ; Ni )| } |z2

i &z1
i |

By the exponential decay of correlations we have

|+`2
4, z

�
� ( f ; N i )|�Cz� ie&d(2, Ql (i))�C

the bound (5.2) is thus obtained by applying Proposition 4.3 to estimate
|z2

i &z1
i |. Note in fact that d(2, � (k, +)4)�dl&r.

5.2. Short-Range Renormalized Potential

In this section we consider the limit l � � of the short range part of
the renormalized potential. By applying Theorem 4.5, we prove the
necessary estimates. This would also allow us to conclude the proof of
Theorem 2.3.
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Proposition 5.3. Recall that the short range part of the renor-
malized potential 8 (l), sr

X has been defined in (3.69). We introduce

9 (l), sr
X (mX) :=S(X ) 1

2 :
i # X

m2
i +8 (l), sr

X (mX) (5.5)

where

+1 if X=A� k1
, Dk4

S(X ) :={&1 if X=C� k3
, Fk2

(5.6)

0 otherwise

Then the renormalized Hamiltonian can be written as

H (l, {)
Ip

(n
�
)=&1

2 :
i # Ip

m2
i + :

X/Ip

9 (l), sr
X (mX)+ :

X/Ip

8 (l, {), lr
X (mX) (5.7)

Moreover there is a constant a>0 such that

lim
l � �

sup
mX # 0� (l)

|mX | �la

|9 (l), sr
X (mX)|=0 for any X//Ll , |X |�2 (5.8)

Note that Theorem 2.3 follows directly from Theorem 3.1 and
Propositions 5.1 and 5.3.

Proof of Proposition 5.3. By using (4.27), for each V=�i # S Ql(i),
recalling that mi=(ni&\ |Ql | )�- / |Ql |, we have

log +{
V, z(Mi=m i , i # X )

=const& 1
2 :

i # X

m2
i

&{ 1
2 ( (n

�
&\

�
(l) |Ql | ), (v(l))&1 (n

�
&\

�
(l) |Ql | )) & 1

2 :
i # X

m2
i =

+log[1+R{
V (mX)] (5.9)

Therefore, by (3.69) (where the boundary condition is {=0 and
dl(X, I c

p)>d ), we have

9 (l), sr
X (mX)=&S(X ) { 1

2 ( (n
�
&\

�
(l) |Ql | ), (v(l))&1 (n

�
&\

�
(l)|Ql |)& 1

2 :
i # X

m2
i =

+log[1+R0
V (mX)] (5.10)
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Indeed, to get (5.7), it is sufficient to observe that

(i) given a block Ql(i) contained in Ap , the corresponding one-
body renormalized interaction 1

2 m2
i appears only in one term 8 (l), sr

X (mX)
with X=A� k1

for one and only one Ak1
# Ap with S(X )=+1

(ii) given a block Ql(i) contained in Bp , the corresponding one-
body renormalized interaction 1

2 m2
i appears in two terms 8 (l), sr

X (mX) with
X=A� k1

with S(X )=+1 and in one term with X=Fk2
with Bk2

# Bp and
S(X )=&1

(iii) given a block Ql(i) contained in Cp , the corresponding one-body
renormalized interaction 1

2 m2
i appears in four terms 8 (l), sr

X (mX) with
X=A� k1

with S(X )=+1, in two terms with X=Fk2
with Bk2

# Bp and
S(X )=&1 and in one term X=C� k3

with Ck3
# Cp and S(X )=&1

(iv) given a block Ql(i) contained in Dp , the corresponding one-
body renormalized interaction 1

2 m2
i appears in two terms with X=A� k1

with
S(X )=+1, in two terms with X=C� k3

with Ck3
# Cp and S(X )=&1 and in

one term X=Dk4
with Dk4

# Dp and S(X )=+1.

Performing the different cancellations in the four sub-lattices Ap , Bp , Cp , Dp

we easily get (5.7). Finally, to prove (5.8), we note that by Proposition 4.3
we have

} |Ql | (v(l))&1
i, j &$i, j }�C

l

and, by strong mixing,

|\ (l)
i (z

�
)&\(zi )|�Cl&1

Hence the bound (5.8) follows from (5.10) and Theorem 4.5. K

5.3. Gibbsianness of Renormalized Measure

We show here that, provided Condition GMUSM holds and l is large
enough, the renormalized measure +(l) is Gibbsian w.r.t. the potential 8(l)

which has been constructed in Section 3. We have in fact the following result.

Proposition 5.4. Assume Condition GMUSM holds and define
the renormalized potential 8(l) as in Section 3. Then the renormalized
measure + (l)

z is Gibbsian w.r.t. 8(l), i.e.

+ (l)
z (mI | mI c)=

exp[�X & I{< 8 (l)
X (mI b mI c)]

�mI # 0� I
(l) exp[�X & I{< 8 (l)

X (mI b mI c)]
, + (l)

z a.s. (5.11)
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Note that Theorem 2.2 follows directly from Theorem 3.1 and Propo-
sitions 5.1, 5.3 and 5.4. Indeed GMUSM implies B=\([0, �))=[0, 1].

Proof of Proposition 5.4. We recall the random variables Mi=
Mi (') have been defined in (1.3). We introduce the two families of
_-algebras: F4 :=_['x , x # 4], 4/L, and F (l)

I :=_[Mi , i # I ], I/Ll .
For I//Ll and F: 0� (l)

I [ R let us first prove that

+(l)
z (F(mI ) | F (l)

I c )=+z(F(MI ) | F (l)
I c ), + (l)

z a.s. (5.12)

let G be a local function measurable w.r.t. F (l)
I c ; by definition of the

measure + (l)
z we have

+z(F(MI ) G(MI c))=+ (l)
z (F(mI ) G(mI c))

=| d+ (l)
z (m

�
) G(mI c) + (l)

z (F(mI ) | F (l)
I c )

on the other hand,

+z(F(MI ) G(MI c))=| d+z(') G(MI c(')) +z(F(MI (')) | F (l)
I c )

=| d+ (l)
z (m

�
) G(mI c) +z(F(MI (')) | F (l)

I c )

which prove (5.12).
Let V=�i # V� Ql(i)//L; we note that for I/V� we have

+z(MI=mI | F (l)
I c )=+z(+z(MI=mI | FV c 6 F (l)

I c ) | F(l)
I c )

=+z(+z(MI=mI | F (l)
V� "I 6 FV c) | F (l)

I c ) (5.13)

on the other hand, by definition of the renormalized Hamiltonian and the
corresponding potential, see Section 3

+{
V, z(MI=mI | MV� "I=mV� "I )

=

exp[�X/V�
X & I{<

8 (l, {)
X (mI b mV� "I )]

�mI # 0� I
(l) exp[�X/V�

X & I{<

8 (l, {)
X (mI b mV� "I )]

(5.14)

since Condition GMUSM holds, by Proposition 5.1, (3.5) is satisfied with
D=[0, 1] and therefore, by Theorem 3.1, the r.h.s. of (5.14) converges, as
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V A L, to the r.h.s. of (5.11) uniformly in { and m
�
. By using also (5.13) and

(5.12) we thus conclude the proof. K

APPENDIX

A.1. Proof of USM(A) O MUSM(A) in Dimension 2

Let RL, 3L(i) be the rectangle with vertical and horizontal sides L, 3L,
respectively, and which is centered at Q(L)(i).

The fact that we only consider this rectangle with longer horizontal
side does not represent, of course, a loss of generality and is made only to
fix notation.

For M an even integer, M�2 and L0 odd integers, we write:

L� =ML0 ; RL� , 3L� =RL� , 3L� \\L0&1
2

,
L0&1

2 ++
again the choice of the center is made to fix notation and does not con-
stitute a loss of generality. Recall that since M is even and L0 is odd the
center of QL� ((L0&1)�2, (L0&1)�2)) is in (L0 �2, L0�2).

We set RL� , 3L� =Q l
L� _ Qc

L� _ Qr
L� where by Q l

L� , Qc
L� , Qr

L� we denote the
left, central and right L� _L� squares, respectively, contained in RL� , 3L� .

Consider a 2D lattice gas with, an interaction satisfying USM (A) for
some A�[0, �). We start noticing that from the validity of USM(A) it
is immediate to deduce that for each z # A there exists an integer L0 such
that the following condition

sup
_, { # 0

sup
i # [1, 2]

|
ZV (_ (i, +), _(i, &), {) ZV ({ (i, +), {(i, &), {)
ZV (_(i, +), {(i, &), {) ZV ({(i, +), _(i, &), {)

&1 }<=(2) (A1.1)

is verified for V=QL0
(i), RL0, 3L0

(i) in the homogeneous activity case. This,
together with the results of [O], [OP] establishes the equivalence of USM
and C1 in the homogeneous activity case; this result is valid in any dimension.

Now, given a closed set C�A suppose that we are able to prove the
existence of L� such that: for all z, z$ # C, if we consider our lattice gas
enclosed in V=RL� , 3L� with activity z$ in Q l

L� and z in Qc
L� _ Q r

L� (i.e., we take
the same activity both in Qc

L� and Q r
L� ), then, calling ZV, z, z$({) the corre-

sponding partition function with { boundary condition, we have:

sup
_, {

sup
i # [1, 2]

sup
y # �(i, +)V
y$ # � (i, &) V

}ZV, z, z$(_y , _y$ , {) ZV, z, z$({y , {y$ , {)
ZV, z, z$(_y , {y$ , {) ZV, z, z$({y , _y$ , {)

&1 }< =(L� )
L� 2(d&1)

(A1.2)
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with =(L� ) going to 0 as L� goes to infinity; then, using methods and results
of [O], [OP] it is easy to get MUSM(A). Indeed in the two-dimensional,
multi-grandcanonical case, to get strong mixing conditions using effective-
ness of some finite-size conditions for volumes of the form (2.10) with l

sufficiently large, it is sufficient to verify:

(i) (A1.2) for V=QL� (i) and V=RL� , 3L� (i) with uniform activity in V
arbitrarily chosen in C, and

(ii) (A1.2) for V=RL� , 3L� (i) and activity z$ in Q l
L� and z in Qc

L� _ Qr
L�

uniformly for z, z$ in C. In the homogeneous case (i), as we noticed before,
if, given C, L0 is the size for which SM(L0) holds uniformly in C, as
prescribed by USM(A), then, for L� sufficiently large (A1.2) holds for
V=QL� (i) and V=RL� , 3L� (i) for each (constant in V ) activity z # C. Then
2.1 will follow from next Proposition A1.1.

Proposition A1.1. Suppose that Condition C1(2)(V ) holds for any
V=QL0

(i), RL0, 3L0
(i) contained in one of the three squares Q l

L� , Qc
L� or Qr

L� ;
then, for M#L� �L0 sufficiently large, (A1.2) holds for V=RL� , 3L� .

Proof. We make a geometrical construction similar to the one intro-
duced in [O], [OP] and used in Section 3 to compute, via cluster expan-
sion, the renormalized potential. We recall that we denote by L our
original lattice Z2 whereas we denote by LL0

the L0 -rescaled lattice: we
partition L into cubes of side L0 . We write:

L= .
i # LL 0

QL0
(i)

From now on we will mainly consider the L0 -rescaled lattice; our unit
length will be L0 . In other words we will use the distance dL0

. The ``bricks''
of our construction will be the blocks QL0

or RL0, 3L0
and the original

length-scale will enter only when considering some properties of the parti-
tion functions in the regions QL0

or RL0, 3L0
that we use as input of our per-

turbative theory.
Let e1 , e2 denote, respectively, the horizontal and vertical lattice unit

vectors in LL0
: e1=(1, 0), e2=(0, 1). Following definitions and notation of

Section 3 we further partition LL0
into four sub-lattices:

LL0
=LA

2L0
_ LB

2L0
_ LC

2L0
_ LD

2L0
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where:

LA
2L0

:=[i=(i1 , i2) # LL0
: i1=2j1 , x2=2j2 , for some integers j1 , j2]

LB
2L0

:=LA
2L0

+e2
(A1.3)

LC
2L0

:=LA
2L0

+e1+e2=LB
2L0

+e2

LD
2L0

:=LA
2L0

+e1=LC
2L0

+e2=LB
2L0

+e1+e2

We also set, for i # LL0
:

Ai :=QL0
(2i), Bi :=QL0

(2i+e2),
(A1.4)

Ci :=QL0
(2i+e1+e2), Di :=QL0

(2i+e1).

Then we can partition V#RL� , 3L� into the union of the L0 -blocks of
the four types: A, B, C, D:

V=AV _ BV _ CV _ DV

where

AV :=[Ai : i=(i1 , i2) # LL0
: |i2 |�(M�2&1)�2, |i1|�(3M�2&1)�2]

and similarly for BV , CV , DV .
We have that the left block on the bottom is an A-block whereas the

right one on the top is a C-block.
We denote by :i a generic spin configuration in Ai : :i # [&1, +1]L 2

0.
Similarly for ;i , #i , $i . We simply denote by :, ;, #, $ the configurations in
AV , BV , CV , DV , respectively.

Notice that we have used the same notation (with a very similar mean-
ing) as the one we used in Section 3 to describe ``multi-canonical'' block
variables.

Consider the ``column'' Vl namely the rectangle with basis L0 and
height L� placed at the left-hand of Qc

L� , adjacent, from the exterior, to Q l
L� :

Vl={(x1 , x2) # L : &
L�
2

+
L0+1

2
�x1�&

L�
2

+
L0+1

2
+L0 ,

&
L�
2

+
L0+1

2
�x2� +

L�
2

+
L0&1

2 =
we decompose Vl as disjoint union of A and B blocks:

Vl=Al _ Bl
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where

Al :=AV & Vl , Bl :=BV & Vl

We have:

Al= .
i # I l

A

Ai

where

I l
A={(i1 , i2): i1=&(M�2&1)�2, |i2 |�\M

2
&1+<2=

similarly for Bl .
We write AV=A� _ Al , BV=B� _ Bl ; in other words A� , B� denote the

union of A and B blocks, respectively, which belong to V=RL� , 3L� but not
to Vl .

We will repeat almost the same computation that we made, in the
multi-canonical framework, to compute the renormalized potential.
Namely we adopt the same strategy based on a block decimation proce-
dure over the sequence of sub-lattices D, C, B, A.

The main difference here is that we will treat in a different manner the
region in V#RL� , 3L� adjacent to the boundary between Qc

L� and Q l
L� . Here

we will exploit the fact that this boundary is one-dimensional.
Indeed we will see that the system of the surviving :-variables in Al ,

after decimation on $, #, ; and : in A� , gets an effective interaction which
is exponentially decaying with the distance and uniformly bounded in
norm. The resulting one-dimensional system, regarded on a sufficiently
large scale, is in the weak coupling region and from this it easily follows a
weak coupling between opposite horizontal sides of V#RL� , 3L� so that con-
dition C3 with an infinitesimal =3 is satisfied for V.

We want to perturbatively treat, similarly to what we did in Section 3,
the partition function:

Z{
V := :

' # 0V

exp(H {
V ('))

where

H {
V (') := :

2: 2 & V{<

82(' bV {)
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and we recall that we are using the notation:

V :=RL� , 3L� , { # 0V c#boundary condition outside V

Given {, {$ # 0V c and x, y belonging to the set of conditioning sites
above the upper side and below the lower side of V, respectively, we want
to consider the ratio

ZV, z, z$({$x , {$y , {) ZV, z, z$({)
ZV, z, z$({$x , {) ZV, z, z$({$y , {)

(A1.5)

where ({, {$x , {$y), ({, {$x), ({, {$y) are the configurations obtained from { by
substituting { with {$ in [x, y], [x] and [ y], respectively.

The perturbative expression that we will obtain for Z{
V will show an

almost factorized dependence on boundary conditions in opposite horizon-
tal faces so that we will be able to show that the quantity

}ZV, z, z$({$x , {$y , {) ZV, z, z$({)
ZV, z, z$({$x , {) ZV, z, z$({$y , {)

&1 } (A1.6)

can be made arbitrarily small for L� sufficiently large so that condition C2
is satisfied.

It is easily seen, using the DLR structure of the multi-grandcanonical
Gibbs field, that the case when x, y # V c are close to the two opposite verti-
cal faces (at distance 3L� ) can be treated exactly like in the homogeneous
(constant activity) case; thus we will only consider the above mentioned
case of x, y belonging to upper and lower sets of conditioning spins.

Sometimes, just for the sake of simplicity of notation, we will actually
drop the explicit dependence on the boundary condition { (even though
this dependence is crucial). We express H {

V exactly as we did in (3.13)

HV (')= :
k1: Ak1

# AV

HAk1
(:k1

)+ :
k2: Bk2

# Bk2

HBk2
(;k2

)+WBk2
, V"Bk2

(;k2
| :)

+ :
k3: Ck3

# CV

HCk3
(#k3

)+WCk3
, V"Ck3

(#k3
| ;, :)

+ :
k4: Dk3

# DV

HDk4
($k4

)+WDk4
, V"Dk4

($k4
| #, ;, :) (A1.7)

where, as in (3.12),

W41 , 42
('41

| '42
) :=W('41

| '42
)=H41 _ 42

('41
, '42

)&H41
('41

)&H42
('42

)

(A1.8)

905RG Transformations under Strong Mixing Conditions



We now proceed to the summation over the $, #, ; variables; we repeat
exactly the same operations of splitting and gluing that we performed in
Section 3. We get:

Z{
V=:

:

`
k1: Ak1

# AV

exp[H(:k1
)][ZDk1

((0), (:k1
), (0)) ZDk1

&e1
((0), (0), (:k1

))]&1

_ `
k2: Bk2

# BV

ZB� k2
((0), (:)u, (:)d ) :

;

+:
2(;)

_ `
k3: Ck3

# CV

[ZC� k3
((0))]&1 `

k3: Ck3
# CV

(1+8(3)
Ck3

(:, ;)) :
#

+:, ;
3 (#)

_ `
k4: Dk4

# DV

(1+8 (4)
Dk4

(:, ;, #)) `
k4: Dk4

# DV

(1+8 (4)
Dk4

(:))

_ `
k4: Dk4

# DV

[ZDk4
((0))]&1 (A1.9)

where the terms [ZDk1
&e1

((0), (:k1
), (0))]&1, [ZDk1

((0), (0), (:k1
))]&1

(defined in (3.29)) come from the splitting described in (3.30): in (A1.9), by
an abuse of notation, we still denote by C� , B� and A� their truncation in
RL� , 3L� . Indeed, since we have generic and not periodic b.c., we have to
introduce the modifications described in Section 3 (below Proposition 3.2)
in +:;

Ck3
, +:

Bk2
as well as in the 8 and 9 error terms. Moreover notice that

in the expression in (A1.7) above, we continue to denote by :, ;, #, $ also
the configurations on the A, B, C, D blocks outside V; in other words we
continue to denote by :, ;, #, $ also the part of the { (exterior) configura-
tion in A, B, C, D sub-lattices. We did not have them in (3.34) since, there,
we were using periodic boundary conditions. Now we continue with the
same operations of splitting as in (3.38) (and gluing as in (3.50)) only for
the B (and A) blocks in A� , B� namely outside the two vertical column Vl .
It is clear that we cannot perform the gluing operation described in (3.38)
for the B blocks in Vl and obtain a small value for the term 8 (2)

Bk2
(:). Indeed

to get a good upper bound for sup: |8 (2)
Bk2

(:)| we need the validity of condi-
tion C1, with a sufficiently small =1 for horizontal RL0 , 3L0

rectangles and
this condition is supposed to hold only for RL0 , 3L0

rectangles completely
contained in one of the three squares Q l

L� , Qc
L� or Q r

L� . For RL0 , 3L0
rectangles

centered at B block in Bl we cannot use condition C1 since these rectangles
have simultaneously non-empty overlap with two of the big squares namely
Ql

L� , Qc
L� ; the rectangles RL0 , 3L0

having non-empty overlap with Qc
L� , Q r

L�

behave exactly like in the homogeneous case since the activity in Qc
L� _ Q r

L�

is supposed to be constant.
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In this way we obtain the following expression

Z{
V=Z� {

V :
:

Z� Vl
(:) `

k1: Ak1
# A�

+Ak1
(:k1

)

_ `
k1: Ak1

# A�

(1+9 (1)
Ak1

(:k1
)) `

k2: Bk2
# B�

(1+8 (2)
Bk2

(:)) `
k4: Dk4

# DV

(1+9 (4)
Dk4

(:))

_:
;

+:
2(;) `

k3: Ck3
# CV

(1+8 (3)
Ck3

(:, ;))

_:
#

+:, ;
3 (#) `

k4: Dk4
# DV

(1+8 (4)
Dk4

(:, ;, #)) (A1.10)

where +Ak1
(:k1

) is defined in (3.52), Z� {
V is given by

Z� {
V= `

k1: Ak1
# A�

ZA� k1
((0)) `

k2: Bk2
# B�

[ZFk2
(0)]&1

_ `
k3: Ck3

# CV

[ZC� k3
((0))]&1 `

k4: Dk4
# DV

ZDk4
((0))

and

Z� Vl
(:) := `

}1: Ak1
# Vl

exp(H(:k1
))[ZDk1

((0), (:k1
), (0))]&1

_[ZDk1
+e1

((0), (0), (:k1
))]&1 `

}2: Bk2
# Vl

ZB� k2
((0), (:k2+e2

), (:k2
))

(A1.11)

Let us call :l the complex of : variable in Al . If we perform, in the
r.h.s. of (A1.10) the sum over the #, ; variables and over the : variables
in A�V , we get:

Z{
V=Z� {

V :
:l # 0Al

Z� Vl
(:l ) 5 {

V (:l ) (A1.12)

where, of course,

5 {
V (:l )= :

: # 0A� V

`
k1: Ak1

# A�

+Ak1
(:k1

)

_ `
k1: Ak1

# A�

(1+9 (1)
Ak1

(:k1
)) `

k2: Bk2
# B�

(1+8 (2)
Bk2

(:))

_ `
k4: Dk4

# DV

(1+9 (4)
Dk1

(:)) :
;

+:
2(;) `

k3: Ck3
# CV

(1+8 (3)
Ck3

(:, ;))

_:
#

+:, ;
3 (#) `

k4: Dk4
# DV

(1+8 (4)
Dk4

(:, ;, #)) (A1.13)
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Like in the Section 3 we can write:

5 {
V (:l )=1+ :

n�1

:
R1 ,..., Rn : R� i/V,

R� i & R� j=<, i< j=1,..., n

`
n

i=1

`{
Ri

(:l ) (A1.14)

where the polymers Ri are defined like in Section 2 with the obvious
changes. In this way we are reduced to a one-dimensional system on Vl ,
with finite norm, rapidly decaying interaction. Indeed we can write:

Z{
V= :

:l # 0Al

exp(H� (:l )) (A1.15)

Where

H� (:l ) :=const.+ :
k1 # Vl

H(:k1
)&log Z{

Dk1
(:k1

)&log Z{
Dk1

&e1
(:k1&e1

)

+ :
k2: Bk2

# Vl
k 2{k*l

log ZZ� k2
(:k2

, :k2+e2
)+log ZB� k*l

(:k*l
, : ({)

k*l+e2
)

+ :
1/Al

8� {
1 (:1) (A1.16)

where

(1) 8� {
1 (:1) :=�1

R1 ,..., Rn
.T (R1 ,..., Rn) >n

i=1 `{
Ri

(:1),

(2) the sum �1
R1 ,..., Rn

runs over the clusters of (incompatible)
polymers ``touching'' the whole set 1 of A-blocks in the sense that the
product of the activities of the polymers R1 ,..., Rn explicitly depend on all
the :-variables corresponding to the A-blocks in 1 and does not depend on
any other :.

(3) we introduced ZDk
(:k)=ZDk

((0), (:k), (0)), ZB� k
(:k , :k+e2

)=
ZB� k

((0), (:k+e2
), (:k))

(4) kl* is the index of the uppermost B-block in V l :

kl* :=&(M�2&1)�2, (M�2&1)�2

and : ({)
k*l+e2

is the configurations in the A-blocks immediately outside (on the
top) of Vl .

Notice that the dependence on the boundary condition { external to V
is really present (beyond the term ZB� k*l

(:k*l
, : ({)

k*l+e2
)), only in ZDk

with Dk

adjacent to the boundary �V (upper and lower side).
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From (A1.15), (A1.16) and the general theory of cluster expansion (see
Proposition 3.2) it follows that, for M sufficiently large, there exist positive
constants c1 , m1 , m2 , m3 such that:

:
1 % A0

&8{
1 &� em1 |1 |em2 diam 1<� (A1.17)

and, for any y # �V, 1/Al :

sup
:l

sup
{, {$: {x={x$ \x{ y

|8� {(:l )&8� {$(:l )|�c1e&m3 dist(1, y) (A1.18)

We are now reduced to a one-dimensional system with finite norm, rapidly
decreasing potential. We can then apply the theory developed in [CO2]
and especially in [CCO] (see also [CEO],[CO1]).

Let us summarize the strategy of [CO2], [CCO] to find good mixing
properties of the Gibbs states for the one-dimensional systems like ours.
Consider the system of M�2 variables :k on Vl . Suppose that the integers
p, n are such that M�2 is a multiple of pn. We divide the interval
[1,..., M�2] into m=M�2pn intervals I1 ,..., Im of length pn. We call long
range the contribution to the interaction coming from the terms with range
larger than p. We decompose the potential 8 as:

8=8sr+8lr with 8 sr
1 =0 if diam 1 >p;

8 lr
1{0 only if diam 1 >p (A1.19)

The idea is to treat 8lr as a small perturbation. Indeed given a single
block Ij , a uniform upper bound on the sum of the absolute values of the
contributions of the long-range terms involving Ij is of the order of
n exp(&cp) for a suitable positive constant c. On the other hand for the
``reduced'' system with only short range interactions we can exploit the one
dimensionality and the uniform boundedness of the interaction. Indeed the
short range transfer matrix has a uniform positive gap in its spectrum. This
would imply an exponential clustering of the short range Gibbs measure:
the truncated correlations at the extrema of an interval Ij would decay as
exp(&c$n) with c$ depending only on the gap of the transfer matrix. In the
perturbative expansions in [CO2], [CCO], the intervals Ij involved in at
least one long range term are treated separately from the other ones and
they happen to be very rare; on the other ones, where only the short range
terms are present the mechanism of strictly positive gap of the transfer
matrix is active, inducing exponential decay of correlations. We refer to
[CO2], [CCO] for more details; in these articles, (actually in a more com-
plicated situation), analyticity of the free energy and decay of truncated
correlations are proved. In our case, as a consequence of the methods of

909RG Transformations under Strong Mixing Conditions



[CO2], [CCO] we get exponential decay of truncated correlations. This,
together with (A1.18) allows to conclude the proof of Proposition 3.2. K

A.2. A Counterexample to USM O MUSM in Dimension 3

We give here an example that, in general, the implication USM(A) O
MUSM(A) does not hold. We stress that our example is ad hoc, in par-
ticular the interaction is translation invariant only by even shifts. We
believe however it sheds some light on the pathologies that may happen.

It is convenient to describe the example (see Fig. 9) by using spin
variables, _ # [&1, 1]Z 3

. We denote by (e1 , e2 , e3) the canonical basis
in Z3. The one body potential (magnetic field) is given as follows

8[x](_x)={&k_x

k_x

if x1 is even
if x1 is odd

Fig. 9. (a) Interchanging and not interacting planes in model (A2.1); \k is the one body
potential acting on each plane. (b) Schematic representation of the two body interaction in
coupled planes of model (A2.1).
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the two body potential is instead given by

8[x, y](_x , _y)

&J_x_y if x1 is even, y1 is odd and y=x+e1+ae2+be3

={ for some (a, b) # [(0, 0), (1, 0), (0, 1), (0, &1)]
0 otherwise

where J>0. All the other potentials vanish, i.e. 84=0 for |4|>2.
Note that the layer [x: x1=a, a even] interacts only with the layer

[x: x1=a+1]; in particular each double layer is independent of everything
else. Furthermore we claim that each double-layer is isomorphic to a
standard two dimensional Ising model with staggered magnetic field (see
Fig. 9b). We can in fact map the layer [x=x1=a, a even] to the even sub-
lattice of Z2, as follows

(a, x2 , x3) [ {(2x2 , x3)
(2x2&1, x3)

if x3 is even
if x3 is odd

and the layer [x: x1=a+1] to the odd sub-lattice of Z2, as follows

(a+1, x2 , x3) [ {(2x2&1, x3)
(2x2 , x3)

if x3 is even
if x3 is odd

It is easy to verify that under the above mapping the double layer
[x: x1=a, a even] _ [x: x1=a+1] is mapped onto the two dimensional
Ising model with the following interaction

84(_)={
&k_x

k_x

&J_x _y

0

if 4=[x] and x1+x2 is even
if 4=[x] and x1+x2 is odd
if 4=[x, y], y=x+e, or y=x+e2

otherwise

(A2.1)

and we are left with studying the strong mixing properties of such a model.
Let us denote by +{

4 the Gibbs local specification associated to the
interaction (A2.1) and by +{

4, h the measure obtained from +{
4 by adding a

(constant) magnetic field h # R, i.e. &k on the first line of (A2.1) becames
&k&h whereas k on the second line of (A2.1) becames k&h. We claim
that, if k is chosen large enough (depending on J ) such a measure does
satisfy condition GUSM. Roughly speaking, we have a large magnetic field
in either the odd or the even sub-lattice, therefore the phase is determined
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on that sub-lattice; since the other sub-lattice is conditionally independent
(given the first sub-lattice) we get the strong mixing condition. Indeed one
can verify that the finite size condition C1 holds on squares of side 2 with
constants uniform in h.

On the other hand it is very easy to show that there is no l0 such that
the 3 dimensional model we started from satisfies GMUSM. Let l be an
odd integer and consider 4=Ql((&(l&1)�2, 0, 0)) _ Ql((l+1)�2, 0, 0));
put a magnetic field h1=&k (resp. h2=+k) on the first (resp. second)
cube. The image, under above mapping, of the double-layer [x: x1=0] _
[x: x1=1] is now the standard two-dimensional Ising with zero magnetic
field. If J is chosen large enough we then have a long range order, hence
(2.3) fails to hold.

The pathology that has occurred is the following. Even if the local
specification does satisfy the strong mixing condition separately in each one
of the two cubes Ql((&(l&1)�2, 0, 0)), Ql((l+1)�2, 0, 0)), when we put
them together we have a long range order which propagates inside the
double-layer which sits across the interface between the two cubes.
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